POJ 2524-Ubiquitous Religions(入門並查集)
Ubiquitous Religions
Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 30241 | Accepted: 14633 |
Description
There are so many different religions in the world today that it is difficult to keep track of them all. You are interested in finding out how many different religions students in your university believe in.
You know that there are n students in your university (0 < n <= 50000). It is infeasible for you to ask every student their religious beliefs. Furthermore, many students are not comfortable expressing their beliefs. One way to avoid these problems is to ask m (0 <= m <= n(n-1)/2) pairs of students and ask them whether they believe in the same religion (e.g. they may know if they both attend the same church). From this data, you may not know what each person believes in, but you can get an idea of the upper bound of how many different religions can be possibly represented on campus. You may assume that each student subscribes to at most one religion.
You know that there are n students in your university (0 < n <= 50000). It is infeasible for you to ask every student their religious beliefs. Furthermore, many students are not comfortable expressing their beliefs. One way to avoid these problems is to ask m (0 <= m <= n(n-1)/2) pairs of students and ask them whether they believe in the same religion (e.g. they may know if they both attend the same church). From this data, you may not know what each person believes in, but you can get an idea of the upper bound of how many different religions can be possibly represented on campus. You may assume that each student subscribes to at most one religion.
Input
The input consists of a number of cases. Each case starts with a line specifying the integers n and m. The next m lines each consists of two integers i and j, specifying that students i and j believe in the same religion. The students
are numbered 1 to n. The end of input is specified by a line in which n = m = 0.
Output
For each test case, print on a single line the case number (starting with 1) followed by the maximum number of different religions that the students in the university believe in.
Sample Input
10 9 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 10 4 2 3 4 5 4 8 5 8 0 0
Sample Output
Case 1: 1 Case 2: 7
Hint
Huge input, scanf is recommended.
Source
Alberta Collegiate Programming Contest 2003.10.18
題目意思:
學校有n個人,編號1 到 n;
下面輸入 m 行,每行兩個人,兩個人在一個種族中;
如果有人不在這個學校中,即編號大於n,則忽略不計;
參照啊哈演算法,初始化為i
題目意思:
學校有n個人,編號1 到 n;
下面輸入 m 行,每行兩個人,兩個人在一個種族中;
如果有人不在這個學校中,即編號大於n,則忽略不計;
學校想給每個種族發一種東西,所以你要統計共有多少個種族,如果此人沒有出現,則可認為所有沒出現的一個人自信仰一個種族;
輸出共有多少個種族。/*
* Copyright (c) 2016, 煙臺大學計算機與控制工程學院
* All rights reserved.
* 檔名稱:father.cpp
* 作 者:單昕昕
* 完成日期:2016年1月19日
* 版 本 號:v1.0
*/
#include <stdio.h>
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cmath>
using namespace std;
int set[50000+5];
int set_find(int p)
{
if(set[p]==0)
return p;
return set[p]=set_find(set[p]);
}
void join(int p,int q)
{
int p1,q1;
p1=set_find(p);
q1=set_find(q);
if(p1!=q1)
set[p1]=q1;
}
int main()
{
int n, m, i, j,ans,cnt=0;
while(scanf("%d%d", &n, &m)&&n&&m)
{
ans=0;
memset(set,0,sizeof(set));
while(m--)
{
scanf("%d%d", &i, &j);
join(i,j);
}
for(int i=1; i<=n; i++)
if(set[i]==0)
ans++;
printf( "Case %d: %d\n",++cnt, ans);
}
return 0;
}
參照啊哈演算法,初始化為i
/*
* Copyright (c) 2016, 煙臺大學計算機與控制工程學院
* All rights reserved.
* 檔名稱:father.cpp
* 作 者:單昕昕
* 完成日期:2016年1月19日
* 版 本 號:v2.0
*/
#include <stdio.h>
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cmath>
using namespace std;
int set[50000+5];
int n;
void init()
{
for(int i=1;i<=n;++i)
set[i]=i;
}
int set_find(int p)
{
if(set[p]==p)
return p;
set[p]=set_find(set[p]);
//cout<<"set["<<p<<"]= "<<set[p]<<endl;
return set[p];
}
void join(int p,int q)
{
int p1,q1;
p1=set_find(p);
q1=set_find(q);
if(p1!=q1)
{
set[p1]=q1;
//cout<<"!!!";
}
//cout<<"set["<<p1<<"]= "<<set[p1]<<"join"<<endl;
}
int main()
{
int m, i, j,ans,cnt=0;
while(scanf("%d%d", &n, &m)&&n&&m)
{
init();
ans=0;
while(m--)
{
scanf("%d%d", &i, &j);
join(i,j);
}
for(int i=1; i<=n; i++)
{
cout<<set[i]<<endl;
if(set[i]==i)
ans++;
}
printf( "Case %d: %d\n",++cnt, ans);
}
return 0;
}
相關文章
- POJ 2524 Ubiquitous ReligionsUI
- POJ2492(種類並查集)並查集
- POJ 1308-Is It A Tree?(並查集)並查集
- 【POJ 1182】食物鏈(並查集)並查集
- POJ1797 Heavy Transportation【並查集+貪心】並查集
- POJ 1703-Find them, Catch them(並查集)並查集
- POJ 2492 A Bug's Life(關係並查集)並查集
- POJ 1733 Parity【擴充套件域並查集】套件並查集
- POJ2253 Frogger【並查集+貪心】並查集
- POJ 2492-A Bug's Life(帶權並查集)並查集
- POJ 2236-Wireless Network(並查集)並查集
- POJ 1703 Find them, Catch them (關係並查集)並查集
- poj 1182 並查集經典問題並查集
- POJ-1182-食物鏈(並查集種類)並查集
- POJ 1611-The Suspects(並查集-同一集合)並查集
- 並查集到帶權並查集並查集
- POJ 2492 A bug's life【擴充套件域 | 邊帶權並查集】套件並查集
- POJ 1182(食物鏈-另類做法【拆點】)[Template:並查集]並查集
- 【並查集】【帶偏移的並查集】食物鏈並查集
- POJ 1182 食物鏈【擴充套件域 | 邊帶權並查集】套件並查集
- POJ 2513-Colored Sticks(連線木棍-trie樹+並查集+尤拉通路)並查集
- 並查集(一)並查集的幾種實現並查集
- 3.1並查集並查集
- 並查集(小白)並查集
- 並查集(Union Find)並查集
- 並查集應用並查集
- The Door Problem 並查集並查集
- 並查集練習並查集
- 並查集的使用並查集
- 並查集—應用並查集
- 寫模板, 並查集。並查集
- 並查集跳躍並查集
- 各種並查集並查集
- 食物鏈(並查集)並查集
- 並查集(二)並查集的演算法應用案例上並查集演算法
- The Suspects-並查集(4)並查集
- [leetcode] 並查集(Ⅰ)LeetCode並查集
- [leetcode] 並查集(Ⅱ)LeetCode並查集