2024 CCPC第五屆遼寧省程式設計競賽 集訓2

橙之夏發表於2024-10-24

A. 早餐

print("39.20")

B. 水論文

signed main()
{
    int n,k;
    cin >> n >> k;
    set<int> st;
    int ans = 0;
    st.insert(n);
    for(int i = 0, t = n; i <= k; i ++, t = sqrt(t))
    {
        st.insert(t);
        if(st.count(t * t)) ans += 1;
        else ans += k - i + 1;
        if(t == 1) break;
    }
    cout << ans;
    return 0;
}

C. nim遊戲?

import sys
input = lambda:sys.stdin.readline()

n = int(input())
for i in range(n):
    print('lose')

D. 校驗和

#define int long long
void solve()
{
    int n, k;
    cin >> n >> k;
    string s;
    cin >> s;
    bitset<N> a(s);
    set<int> st;
    unsigned int ans;
    bool ok = 0;
    int cnt = a.count();
    for (int i = 0; i <= k; i++)
    {
        if (__builtin_popcount(i + cnt) == i)
            st.insert(cnt + i);
    }
    if (st.size())
    {
        ans = *st.begin();
        vector<int> res;
        while(ans)
        {
            res.push_back(ans & 1);
            ans >>= 1;
        }
        while (res.size() < k)
            res.push_back(0);
        if (res.size() > k)
            cout << "None";
        else
            for (int i = res.size() - 1; i >= 0; i--)
                cout << res[i];
        cout << "\n";
    }
    else
        cout << "None\n";
}

E. 數房子

#include <bits/stdc++.h>
using namespace std;
#define IOS                       \
    ios_base::sync_with_stdio(0); \
    cin.tie(0);                   \
    cout.tie(0);
// #define int long long
#define endl '\n'
#define all(_x) _x.begin(), _x.end()
#define range(_x, _st, _ed) (_x.begin() + _st), (_x.begin() + _ed)
#define rep(_x, _y, _z) for (int _x = _y; _x < _z; _x++)
#define matrix(_x, _y, _z) vector<vector<int>>(_x, vector<int>(_y, _z))
#define debug(_x) cout << #_x << '=' << _x << endl
typedef long long i64;
typedef pair<int, int> pii;
typedef vector<vector<int>> mat;
constexpr int N = 2e5 + 10;
// dont use umap!!!

const double eps = 1e-12;
const double pi = acos(-1);
int cmp(double x, double y)
{
    if (fabs(x - y) < eps)
        return 0;
    return x > y ? 1 : -1;
}
int sgn(double x)
{
    if (fabs(x) < eps)
        return 0;
    return x > 0 ? 1 : -1;
}

template <typename T>
struct Point
{
    T x, y;
    T cross(Point p1, Point p2)
    {
        return p1.x * p2.y - p2.x * p1.y;
    }
    Point operator-(Point p)
    {
        return {x - p.x, y - p.y};
    }
    Point operator+(Point p)
    {
        return {x + p.x, y + p.y};
    }
    Point operator*(double p)
    {
        return {x * p, y * p};
    }
    T operator*(Point p)
    {
        return cross(*this, p);
    }
    Point operator/(double p)
    {
        return {x / p, y / p};
    }
    bool operator==(Point p)
    {
        return (!cmp(x, p.x)) && (!cmp(y, p.y));
    }
    bool operator!=(Point p)
    {
        return !(*this == p);
    }
    Point rotate(double p)
    {
        return {x * cos(p) - y * sin(p), x * sin(p) + y * cos(p)};
    }
};
typedef Point<double> point;

struct line
{
    point p, v;
};

double dot(point p, point v)
{
    return p.x * v.x + p.y * v.y;
}

double area(point p, line l)
{
    return (p - l.p) * (l.v - l.p);
}

double dist(point p1, point p2)
{
    return hypot(p1.x - p2.x, p1.y - p2.y);
}

point cross_point(line l1, line l2)
{
    auto p = l1.p, v = l1.v, q = l2.p, w = l2.v;
    auto u = p - q;
    double t = w * u / (v * w);
    return p + v * t;
}

signed main()
{
    IOS;
    int n;
    cin >> n;
    vector<point> ps(n);
    for (int i = 0; i < n; i++)
    {
        cin >> ps[i].x >> ps[i].y;
    }
    //    e
    // a /\ d
    //  |  |
    // b -- c
    int cnt = 0;
    for (int a = 0; a < n; a++)     // 列舉a
        for (int b = 0; b < n; b++) // 列舉b
        {
            for (int c = 0; c < n; c++) // 列舉c
            {
                if (area(ps[c], {ps[a], ps[b]}) < 0 && sgn(dot(ps[c] - ps[b], ps[a] - ps[b])) == 0) // 如果c在ab直線的右邊且ab和bc垂直
                {
                    for (int d = 0; d < n; d++) // 列舉d
                    {
                        if (sgn((ps[d] - ps[c]) * (ps[a] - ps[b])) == 0 &&
                            sgn((ps[d] - ps[a]) * (ps[c] - ps[b])) == 0) // 如果dc和ab平行而且ad和bc平行
                        {
                            for (int e = 0; e < n; e++) // 列舉e
                            {
                                // e在直線ab右邊,直線dc左邊且在ad上方
                                if (sgn(dot(ps[e] - ps[a], ps[b] - ps[a])) < 0 && sgn(dot(ps[e] - ps[d], ps[c] - ps[d])) < 0 && sgn(area(ps[e], {ps[d], ps[c]})) > 0 && sgn(area(ps[e], {ps[a], ps[b]})) < 0 && sgn(dist(ps[e], ps[a]) - dist(ps[e], ps[d])) == 0)
                                {
                                    // cout << a << " " << b << " " << c << " " << d << " " << e << '\n';
                                    cnt++;
                                }
                            }
                        }
                    }
                }
            }
        }
    cout << cnt;
    return 0;
}

F. 相遇

vector<vector<int>> edge(N);
int fa[N][21], dep[N], L[N], R[N];
int now = 0;

void dfs(int x, int f)
{
    dep[x] = dep[f] + 1;
    fa[x][0] = f;
    L[x] = ++now; // 記錄當前子樹dfs序的左端點
    for (int i = 1; i < 20; i++)
    {
        fa[x][i] = fa[fa[x][i - 1]][i - 1];
    }
    for (auto v : edge[x])
    {
        if (v == f)
            continue;
        dfs(v, x);
    }
    R[x] = now; // 記錄當前子樹dfs序的右端點
}

int lca(int x, int y)
{
    if (dep[x] < dep[y])
        swap(x, y);
    for (int i = 19; i >= 0; i--)
    {
        if (dep[x] - (1 << i) >= dep[y])
        {
            x = fa[x][i];
        }
    }
    if (x == y)
        return x;

    for (int i = 19; i >= 0; i--)
    {
        if (fa[x][i] != fa[y][i])
        {
            x = fa[x][i];
            y = fa[y][i];
        }
    }
    return fa[x][0];
}

int dis(int x, int y)
{
    return dep[x] + dep[y] - 2 * dep[lca(x, y)];
}

int getfa(int x, int k) // 求x節點向上k級的祖先節點
{
    for (int i = 19; i >= 0; i--)
    {
        if ((1 << i) <= k)
        {
            k -= (1 << i);
            x = fa[x][i];
        }
    }
    return x;
}

int n, m;
int a[N][2]; // 記錄點對
int c[N];    // 差分陣列

signed main()
{
    IOS;
    cin >> n >> m;
    for (int i = 1; i < n; i++)
    {
        int x, y;
        cin >> x >> y;
        edge[x].push_back(y);
        edge[y].push_back(x);
    }

    for (int i = 1; i <= m; i++)
        cin >> a[i][0] >> a[i][1];
    dfs(1, 0);
    auto check = [&](int mid)
    {
        for (int i = 1; i <= m; i++)
        {
            if (dis(a[i][0], a[i][1]) <= mid)
            {
                c[1] += 2; // 這兩個點都可以滿足,在差分陣列整體+2
                continue;
            }
            int anc = lca(a[i][0], a[i][1]);
            for (int j = 0; j < 2; j++) // 分別處理兩個點
            {
                int len = dis(anc, a[i][j]); // 得到其中一點到點對lca的距離
                if (len > mid)               // 如果大於答案
                {
                    // 說明首都在當前節點mid級祖先節點的子樹
                    int p = getfa(a[i][j], mid);
                    c[L[p]] += 1; // 對應的答案區間+1
                    c[R[p] + 1] -= 1;
                }
                else // 如果小於等於答案
                {
                    // 說明首都在另外一點的 兩點距離-mid-1 級祖先的子樹上
                    int p = getfa(a[i][j ^ 1], dis(a[i][0], a[i][1]) - mid - 1);
                    // 對應的答案區間+1
                    c[1] += 1;
                    c[L[p]] -= 1;
                    c[R[p] + 1] += 1;
                }
            }
        }
        int now = 0;
        int mx = 0;
        for (int i = 1; i <= n; i++)
        {
            now += c[i]; // 列舉每個節點的答案區間交集
            mx = max(mx, now);
            c[i] = 0; // 初始化差分陣列
        }
        return mx >= 2 * m; // 如果存在一個滿足所有點條件的首都,則說明mid可行
    };
    int l = 0, r = n;
    while (l < r)
    {
        int mid = (l + r) >> 1;
        if (check(mid))
            r = mid;
        else
            l = mid + 1;
    }
    cout << l;
}

G. 生成括號序列

typedef long long i64;
const int mod = 998244353;

int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0), cout.tie(0);
    string s;
    cin >> s;
    int k = 0;
    vector<int> v;
    for (int i = 0; i < s.length(); i++)
    {
        if (s[i] == ')')
        {
            if (s[i - 1] == '(') // 如果是小括號
                k++;
            else // 如果是大括號
                v.push_back(k);
        }
    }
    i64 ans = 1;
    for (int i = v.size() - 1, j = 0; i >= 0; i--)
    {
        ans = ans * (k - v[i] + 1 + j) % mod;
        j++;
    }
    cout << ans << endl;
    return 0;
}

相關文章