合約跟單交易所開發運營版丨合約跟單交易所繫統開發成熟方案及原始碼詳細

xiaofufu發表於2023-03-28

  人工智慧(Artificial Intelligence,簡稱AI)是指計算機系統在完成類似人類智力所需的任務時所表現出來的能力。它是一種複雜的技術,透過將大量的資料輸入到演算法中進行學習,不斷調整和改進自己的演算法,從而不斷最佳化其效能。


  What are the functions of the contract tracking system?


  1.High concurrency systems can support tens of millions of TPSs per second,which of course refers to pure ordering.The specific transaction process also includes matchmaking and clearing,among which clearing is the most time-consuming and poses the greatest challenge to the stability of the system.


  2.High availability standby system:It is completely consistent with the main system architecture.If the network line fails due to transient high traffic,we can switch to the standby system within a few minutes.


  3.API Quota:This is a self stabilizing protection mechanism when the system is overloaded.


  關於區塊鏈專案技術開發唯:MrsFu123,代幣發行、dapp智慧合約開發、鏈遊開發、單雙幣質押、多鏈錢包開發、NFT盲盒遊戲、公鏈、鏈上游戲開發


  Uniswap博餅、交易所開發、量化合約開發、合約對沖、互助遊戲開發、Nft數字藏品開發、眾籌互助開發、元宇宙開發、swap開發、DAO智慧合約、


  夾子合約、鏈上合約開發、ido開發、商城開發等,開發過各種各樣的系統模式,更有多種模式、制度、案例、後臺等,成熟技術團隊,歡迎實體參考。


  合約量化就是利用程式碼組成的系統以規範的方式進行交易,以高頻率進行交易。量化系統會嚴格按照設定的程式進行交易。交易者在開始交易前,需要設定好盈利點、止損點、回撥點等資料。設定啟動系統後,系統會自動建倉,實時檢測行情,等待行情波動。


  當市場價格漲到之前設定的盈利點後,系統會自動平倉,等待市場的下一次波動;如果有虧損,系統就進行止損操作,如果跌到止損點再加倉,等市價回撥到相應點位再平倉,如此往復。


  There are also multiple modules for contract tracking system development.


  1.Tracking module:It can achieve forward,reverse,and multiple tracking effects for multiple firm offer accounts and transaction sub accounts simultaneously.


  2.Risk control:The platform will conduct different risk assessments for each trader by analyzing various information of users.


  3.Loss Limit:You can limit the maximum loss for each firm offer on the current day,control how much loss you have per day,and add a stop profit based on market trends.


  4.Transaction records:Whether it's a new person or an experienced elderly person,what they do and the transactions they clinch will be seen by people,which is an important basis for people to choose the objects to follow


  import argparse


  import os.path as osp


  import sys


  sys.path.insert(0,'.')


  import torch


  from lib.models import model_factory


  from configs import set_cfg_from_file


  torch.set_grad_enabled(False)


  parse=argparse.ArgumentParser()


  parse.add_argument('--config',dest='config',type=str,


  default='G:/6666Ground_segmentation0813/configs/bisenetv2_city.py',)


  parse.add_argument('--weight-path',dest='weight_pth',type=str,


  default='G:/6666Ground_segmentation0813/v4_model_final.pth')#最後的pytorch模型


  parse.add_argument('--outpath',dest='out_pth',type=str,


  default='G:/6666Ground_segmentation0813/model0124.onnx')#轉成onnx的路徑


  args=parse.parse_args()


  cfg=set_cfg_from_file(args.config)


  if cfg.use_sync_bn:cfg.use_sync_bn=False


  net=model_factory[cfg.model_type](cfg.n_cats,aux_mode='pred')


  net.load_state_dict(torch.load(args.weight_pth),strict=False)


  net.eval()


  #dummy_input=torch.randn(1,3,*cfg.crop_size)


  #dummy_input=torch.randn(1,3,1024,2048)


  dummy_input=torch.randn(1,3,480,640)#影像的輸入尺寸


  input_names=['input_image']


  output_names=['preds',]


  torch.onnx.export(net,dummy_input,args.out_pth,


  input_names=input_names,output_names=output_names,


  verbose=False,opset_version=11)


來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/69956839/viewspace-2942064/,如需轉載,請註明出處,否則將追究法律責任。

相關文章