1. 快速入門python,python基本語法
Python使用縮排(tab或者空格)來組織程式碼,而不是像其 他語言比如R、C++、Java和Perl那樣用大括號。考慮使用for循 環來實現排序演算法:
for x in list_values:
if x < 10:
small.append(x)
else:
bigger.append(x)
標量型別
2.3,4,null,True都是標量
變數
a=2
b='this is alibaba'
c=[1,2,456.,np.nan,c]
資料結構
#列表(list)
myList=[1,2,"hello bro",np.nan,3456225.0987]
#元組(tuple,不可修改)
myTuple=(2,3,'hey morning!',89,np.nan)
#字典(dictionary,俗稱鍵值對)
myDictionary={'key1' :23, "key2" : "hahahh,哈哈哈", "key3" : 78}
#集合(set,集合)
myset=set({'happy','sad','sad'})
運算
a=8
b=2
c=a**b
d=a/b
d
函式(打包好的功能塊)
#定義一個計算平均數的函式
def get_avg(values):
if len(values) == 0:#如果輸入的list沒有值
return 0 #返回0
sum_v = 0
#遍歷所有值
for value in values:
#前一個和加上後一個值
sum_v = value+sum_v
return sum_v / len(values)
avg = get_avg([1, 2, 3, 4])
avg
def get_avg(values):
if len(values) == 0:#如果輸入的list沒有值
return 0 #返回0
sum_v = 0
#遍歷所有值
for value in values:
#前一個和加上後一個值
sum_v = value+sum_v
return sum_v / len(values)
avg = get_avg([1, 2, 3, 4])
avg
迴圈
sum10 = 0
for i in range(1, 11):
sum10 = sum10+i
print(sum10)
sum10 = 0
for i in range(1, 11):
sum10 = sum10+i
print(i)
print(sum10)
2. 快速入門pandas
2.1 pandas核心資料結構和常用API
pandas資料下載連結:https://download.csdn.net/download/sinat_39620217/87413329
2.2 pandas 基礎資料操作
匯入常用的資料分析庫
import numpy as np
import pandas as pd
#建立一個series
s = pd.Series([1, 3, 5, np.nan, 6, 8])
s
0 1.0
1 3.0
2 5.0
3 NaN
4 6.0
5 8.0
dtype: float64
#建立一個時間序列
dates = pd.date_range("20130101", periods=6)
dates
DatetimeIndex(['2023-02-03', '2023-02-04', '2023-02-05', '2023-02-06',
'2023-02-07', '2023-02-08'],
dtype='datetime64[ns]', freq='D')
#以時間序列為index,以“ABCD”為列明,用24個符合正態分佈的隨機數作為數值
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list("ABCD"))
df
A B C D
2023-02-03 -1.688539 -0.687145 -0.087825 -0.113740
2023-02-04 -0.483402 -2.333871 -1.078778 1.786806
2023-02-05 1.154374 0.976104 0.004643 0.754242
2023-02-06 -0.005039 -0.170111 0.578378 0.604114
2023-02-07 1.923344 -1.132254 1.408248 0.101545
2023-02-08 0.876144 1.589423 1.678817 -1.271310
#另一種建立df的方法
df2 = pd.DataFrame(
{
"A": 1.0,
"B": pd.Timestamp("20130102"),
"C": pd.Series(1, index=list(range(4)), dtype="float32"),
"D": np.array([3] * 4, dtype="int32"),
"E": pd.Categorical(["test", "train", "test", "train"]),
"F": "foo",
}
)
df2
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo
#看下資料型別
df2.dtypes
A float64
B datetime64[ns]
C float32
D int32
E category
F object
dtype: object
df2.head(2)
df2.tail()
df2.sample(3)
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo
A B C D E F
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
0 1.0 2013-01-02 1.0 3 test foo
#匯入本地資料到python記憶體
diamonds_df=pd.read_csv('data/diamonds.csv')
diamonds_df
carat cut color clarity depth table price x y z
0 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43
1 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31
2 0.23 Good E VS1 56.9 65.0 327 4.05 4.07 2.31
3 0.29 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63
4 0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75
... ... ... ... ... ... ... ... ... ... ...
53935 0.72 Ideal D SI1 60.8 57.0 2757 5.75 5.76 3.50
53936 0.72 Good D SI1 63.1 55.0 2757 5.69 5.75 3.61
53937 0.70 Very Good D SI1 62.8 60.0 2757 5.66 5.68 3.56
53938 0.86 Premium H SI2 61.0 58.0 2757 6.15 6.12 3.74
53939 0.75 Ideal D SI2 62.2 55.0 2757 5.83 5.87 3.64
53940 rows × 10 columns
#檢視資料的資訊或者基本情況
diamonds_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 53940 entries, 0 to 53939
Data columns (total 10 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 carat 53940 non-null float64
1 cut 53940 non-null object
2 color 53940 non-null object
3 clarity 53940 non-null object
4 depth 53940 non-null float64
5 table 53940 non-null float64
6 price 53940 non-null int64
7 x 53940 non-null float64
8 y 53940 non-null float64
9 z 53940 non-null float64
dtypes: float64(6), int64(1), object(3)
memory usage: 4.1+ MB
#檢視索引
diamonds_df.index
RangeIndex(start=0, stop=53940, step=1)
#檢視列名
diamonds_df.columns
Index(['carat', 'cut', 'color', 'clarity', 'depth', 'table', 'price', 'x', 'y',
'z'],
dtype='object')
#檢視資料基本情況
diamonds_df.describe()
carat depth table price x y z
count 53940.000000 53940.000000 53940.000000 53940.000000 53940.000000 53940.000000 53940.000000
mean 0.797940 61.749405 57.457184 3932.799722 5.731157 5.734526 3.538734
std 0.474011 1.432621 2.234491 3989.439738 1.121761 1.142135 0.705699
min 0.200000 43.000000 43.000000 326.000000 0.000000 0.000000 0.000000
25% 0.400000 61.000000 56.000000 950.000000 4.710000 4.720000 2.910000
50% 0.700000 61.800000 57.000000 2401.000000 5.700000 5.710000 3.530000
75% 1.040000 62.500000 59.000000 5324.250000 6.540000 6.540000 4.040000
max 5.010000 79.000000 95.000000 18823.000000 10.740000 58.900000 31.800000
#行列轉換
df.T
2023-02-03 2023-02-04 2023-02-05 2023-02-06 2023-02-07 2023-02-08
A -1.688539 -0.483402 1.154374 -0.005039 1.923344 0.876144
B -0.687145 -2.333871 0.976104 -0.170111 -1.132254 1.589423
C -0.087825 -1.078778 0.004643 0.578378 1.408248 1.678817
D -0.113740 1.786806 0.754242 0.604114 0.101545 -1.271310
2.3 pandas多維度排序
#對資料進行排序
df.sort_values(by="B",ascending=False)
diamonds_df.head()
A B C D
2023-02-08 0.876144 1.589423 1.678817 -1.271310
2023-02-05 1.154374 0.976104 0.004643 0.754242
2023-02-06 -0.005039 -0.170111 0.578378 0.604114
2023-02-03 -1.688539 -0.687145 -0.087825 -0.113740
2023-02-07 1.923344 -1.132254 1.408248 0.101545
2023-02-04 -0.483402 -2.333871 -1.078778 1.786806
#按照cut和color聯合排序
diamonds_df.sort_values(by=['cut','color','price'],ascending=False)
carat cut color clarity depth table price x y z
27586 2.44 Very Good J VS2 58.1 60.0 18430 8.89 8.93 5.18
27352 2.39 Very Good J VS1 59.6 60.0 17920 8.71 8.77 5.21
27185 2.44 Very Good J SI1 62.9 53.0 17472 8.58 8.62 5.41
27024 2.74 Very Good J SI2 61.5 62.0 17164 8.87 8.90 5.46
26958 2.50 Very Good J SI1 62.8 57.0 17028 8.58 8.65 5.41
... ... ... ... ... ... ... ... ... ... ...
28534 0.42 Fair D SI1 64.7 61.0 675 4.70 4.73 3.05
25695 0.40 Fair D SI1 65.1 55.0 644 4.63 4.68 3.03
10380 0.29 Fair D VS2 64.7 62.0 592 4.14 4.11 2.67
2711 0.25 Fair D VS1 61.2 55.0 563 4.09 4.11 2.51
48630 0.30 Fair D SI2 64.6 54.0 536 4.29 4.25 2.76
53940 rows × 10 columns
2.4 pandas資料篩選
#列範圍
diamonds_df[["cut","depth","price"]]
cut depth price
0 Ideal 61.5 326
1 Premium 59.8 326
2 Good 56.9 327
3 Premium 62.4 334
4 Good 63.3 335
#行範圍
diamonds_df[6:9]
carat cut color clarity depth table price x y z
6 0.24 Very Good I VVS1 62.3 57.0 336 3.95 3.98 2.47
7 0.26 Very Good H SI1 61.9 55.0 337 4.07 4.11 2.53
8 0.22 Fair E VS2 65.1 61.0 337 3.87 3.78 2.49
#按行範圍和列具體
diamonds_df.loc[5:9, ["carat","price","x"]]
carat price x
5 0.24 336 3.94
6 0.24 336 3.95
7 0.26 337 4.07
8 0.22 337 3.87
9 0.23 338 4.00
#按行具體和列範圍
#注意:具體必須要用list來承載(中括號),範圍不能用中括號
diamonds_df.loc[[3,6,9], "cut":"price"]
cut color clarity depth table price
3 Premium I VS2 62.4 58.0 334
6 Very Good I VVS1 62.3 57.0 336
9 Very Good H VS1 59.4 61.0 338
#按行邏輯和列範圍
diamonds_df.loc[diamonds_df.carat>0.3, ["carat","price"]]
carat price
4 0.31 335
13 0.31 344
15 0.32 345
23 0.31 353
24 0.31 353
... ... ...
#按條件篩選
#按照某列進行篩選
diamonds_df[(diamonds_df["carat"] > 0.3) & (diamonds_df["price"] < 400)]
carat cut color clarity depth table price x y z
4 0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75
13 0.31 Ideal J SI2 62.2 54.0 344 4.35 4.37 2.71
15 0.32 Premium E I1 60.9 58.0 345 4.38 4.42 2.68
23 0.31 Very Good J SI1 59.4 62.0 353 4.39 4.43 2.62
24 0.31 Very Good J SI1 58.1 62.0 353 4.44 4.47 2.59
28271 0.32 Good D I1 64.0 54.0 361 4.33 4.36 2.78
28277 0.31 Very Good J SI1 61.9 59.0 363 4.28 4.32 2.66
28278 0.31 Very Good J SI1 62.7 59.0 363 4.29 4.32 2.70
28279 0.31 Premium J SI1 60.9 60.0 363 4.36 4.38 2.66
28280 0.31 Good J SI1 63.5 55.0 363 4.30 4.33 2.74
#篩選cut屬於Premium和Good
diamonds_df[(diamonds_df['cut'].isin(['Premium','Good'])) &
(diamonds_df['carat']>0.3) & (diamonds_df['price']<400) ]
carat cut color clarity depth table price x y z
4 0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75
15 0.32 Premium E I1 60.9 58.0 345 4.38 4.42 2.68
28271 0.32 Good D I1 64.0 54.0 361 4.33 4.36 2.78
28279 0.31 Premium J SI1 60.9 60.0 363 4.36 4.38 2.66
28280 0.31 Good J SI1 63.5 55.0 363 4.30 4.33 2.74
28284 0.32 Premium J SI1 62.2 59.0 365 4.37 4.41 2.73
34928 0.32 Good J SI1 63.2 56.0 374 4.31 4.36 2.74
34929 0.32 Good I SI2 63.4 56.0 374 4.34 4.37 2.76
34932 0.32 Good I SI2 63.1 58.0 374 4.34 4.41 2.76
34939 0.31 Good I SI1 64.3 55.0 377 4.27 4.29 2.75
2.5 pandas分組計算
#分組計算
df = pd.DataFrame(
{
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
"B": ["one", "one", "two", "three", "two", "two", "one", "three"],
"C": np.random.randn(8),
"D": np.random.randn(8),
}
)
df
A B C D
0 foo one -1.265302 -1.718949
1 bar one -0.814010 0.097433
2 foo two -1.359590 0.708358
3 bar three 0.562501 -2.525745
4 foo two 1.036076 0.455022
5 bar two 2.192717 -0.163239
6 foo one 0.623262 -0.632277
7 foo three -0.791469 1.801869
#按照A分組,分別計算C和D的和
df.groupby("A")[["C", "D"]].sum()
C D
A
bar 1.941208 -2.591551
foo -1.757023 0.614024
#按照多列進行分組計算
df.groupby(["A", "B"]).sum()
C D
A B
bar one -0.814010 0.097433
three 0.562501 -2.525745
two 2.192717 -0.163239
foo one -0.642040 -2.351226
three -0.791469 1.801869
two -0.323514 1.163381
#按照cut和color的組合計算平均價格
diamonds_df.groupby(by=['cut','color'])[['price']].mean().round(2).reset_index()
cut color price
0 Fair D 4291.06
1 Fair E 3682.31
2 Fair F 3827.00
3 Fair G 4239.25
4 Fair H 5135.68
5 Fair I 4685.45
6 Fair J 4975.66
7 Good D 3405.38
8 Good E 3423.64
9 Good F 3495.75
10 Good G 4123.48
11 Good H 4276.25
12 Good I 5078.53
13 Good J 4574.17
2.6 pandas透視表
#透視表
df = pd.DataFrame(
{
"甲": ["one", "one", "two", "three"] * 3,
"乙": ["A", "B", "C"] * 4,
"丙": ["foo", "foo", "foo", "bar", "bar", "bar"] * 2,
"D": np.random.randn(12),
"E": np.random.randn(12),
}
)
df
甲 乙 丙 D E
0 one A foo 0.593815 0.399765
1 one B foo 0.943989 -0.073500
2 two C foo 0.504724 0.916902
3 three A bar 1.377307 0.930002
4 one B bar 0.364403 2.430547
5 one C bar -0.392653 -0.307336
6 two A foo -0.698488 2.202757
7 three B foo -2.046343 0.562993
8 one C foo -0.570906 0.719652
9 one A bar -1.493323 0.612229
10 two B bar 1.744241 0.616304
11 three C bar 2.337644 1.568032
pd.pivot_table(df, values="D", index=["甲","乙"], columns=["丙"],aggfunc='mean')
丙 bar foo
甲 乙
one A -1.493323 0.593815
B 0.364403 0.943989
C -0.392653 -0.570906
three A 1.377307 NaN
B NaN -2.046343
C 2.337644 NaN
two A NaN -0.698488
B 1.744241 NaN
C NaN 0.504724