Jordan's Castles
我們先思考如何快速求出 \(b_1, b_2, b_3...b_n\) 顯然我們可以直接用二分找到,然後我們可以直接將 \(a_i\) 改為 \(min(a[i], b[i])\),然後統計答案即可
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 1e5 + 5;
int t, n, a[N];
void Solve() {
cin >> n;
for (int i = 1; i <= n; i++) {
cin >> a[i];
}
int ans = 0;
for (int i = n; i >= 1; i--) {
int l = 0, r = n;
while (l < r) {
int mid = (l + r + 1) >> 1;
if (a[mid] >= i) {
l = mid;
}
else r = mid - 1;
}
ans += max(0ll, a[i] - l);
a[i] = min(a[i], l);
}
cout << ans << "\n";
}
signed main() {
ios::sync_with_stdio(0);
cin.tie(0);
cin >> t;
while (t--) {
Solve();
}
return 0;
}
Game on a Graph
我們看到一個重要的性質 "移除該分量中編號最小的頂點",那麼我們可以從大到小列舉編號,每次列舉出邊 \(v\) 那麼只要 \(v < i\) 就可以直接用並查集合並,最後判斷一下奇偶性即可
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 1e5 + 5;
int t, n, m, fa[N], f[N], sz[N];
vector<int> g[N], new_g[N];
void dfs(int u) {
sz[u] = 1;
for (auto v : new_g[u]) {
dfs(v);
sz[u] += sz[v];
}
}
int find(int x) {
if (fa[x] == x) {
return x;
}
return fa[x] = find(fa[x]);
}
void Solve() {
cin >> n >> m;
for (int i = 0; i <= n; i++) {
fa[i] = i;
g[i].clear();
new_g[i].clear();
}
for (int i = 1, u, v; i <= m; i++) {
cin >> u >> v;
u++, v++;
g[u].push_back(v);
g[v].push_back(u);
}
for (int i = n; i >= 1; i--) {
for (auto v : g[i]) {
if (v > i && find(v) != i) {
f[find(v)] = i;
new_g[i].push_back(find(v));
fa[find(v)] = i;
}
}
}
for (int i = 1; i <= n; i++) {
if (find(i) == i) {
f[i] = 0;
new_g[0].push_back(i);
}
}
dfs(0);
for (int i = 1; i <= n; i++) {
if (f[i] == 0 || (n - sz[f[i]]) % 2 == 1) {
cout << i - 1 << ' ';
}
}
cout << "\n";
}
signed main() {
ios::sync_with_stdio(0);
cin.tie(0);
cin >> t;
while (t--) {
Solve();
}
return 0;
}