HZOI大作戰 15pts
賽時暴力跳父親15pts;
正解:發現在樹上對於向上找大於這個數的操作具有隨意劃分性,所以考慮倍增,設 $ f_{i, j} $ 表示從 $ i $ 這個點向上跳 $ 2^j $ 個比它大的數能跳到哪裡,於是我們只需處理出向上跳一個(也就是 $ f_{i, 0} $)的,然後 $ ST $ 表預處理即可;
具體地,對於一個點 $ a_i $:
如果 $ a_{fa_{i}} > a_i $,就 $ f_{i, 0} = fa_{i} $;
如果 $ a_{fa_{i}} = a_i $,就 $ f_{i, 0} = f_{fa_i, 0} $;
否則用倍增找出第一個比它大的賦值即可;
對於查詢,思路基本一樣;
時間複雜度: $ \Theta(n \log n) $;
點選檢視程式碼
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
int n, q;
int a[500005];
struct sss{
int t, ne;
}e[2000005];
int h[2000005], cnt;
void add(int u, int v) {
e[++cnt].t = v;
e[cnt].ne = h[u];
h[u] = cnt;
}
int f[500005][21], dep[500005];
void dfs(int x, int fa) {
if (a[x] < a[fa]) f[x][0] = fa;
else if (a[x] == a[fa]) f[x][0] = f[fa][0];
else if (a[x] > a[fa]) {
int y = fa;
for (int i = 19; i >= 0; i--) {
if (a[f[y][i]] <= a[x] && f[y][i] != 0) y = f[y][i];
}
f[x][0] = f[y][0];
}
for (int j = 1; j <= 19; j++) {
f[x][j] = f[f[x][j - 1]][j - 1];
}
dep[x] = dep[fa] + 1;
for (int i = h[x]; i; i = e[i].ne) {
int u = e[i].t;
if (u == fa) continue;
dfs(u, x);
}
}
int w(int u, int v, int c) {
int ans = 0;
if (c < a[u]) {
ans++;
} else if (c > a[u]) {
for (int i = 19; i >= 0; i--) {
if (a[f[u][i]] <= c && f[u][i] != 0) u = f[u][i];
}
}
for (int i = 19; i >= 0; i--) {
if (dep[f[u][i]] >= dep[v]) {
u = f[u][i];
ans += pow(2, i);
}
}
return ans;
}
int main() {
freopen("accepted.in", "r", stdin);
freopen("accepted.out", "w", stdout);
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n >> q;
for (int i = 1; i <= n; i++) {
cin >> a[i];
}
int x, y;
for (int i = 1; i <= n - 1; i++) {
cin >> x >> y;
add(x, y);
add(y, x);
}
dfs(1, 0);
int u, v, c;
for (int i = 1; i <= q; i++) {
cin >> u >> v >> c;
cout << w(u, v, c) << '\n';
}
return 0;
}
鄰面合併 70pts
賽時錯解70pts;
正解:看見 $ m \leq 8 $,考慮狀壓;
設 $ f_{i, j} $ 表示考慮到第 $ i $ 行,當前行的連線狀態是 $ j $ 時的最小劃分數;
這裡的連線狀態是指,對於 $ j $ 的一個二進位制位 $ j_x $( $ x $ 從 $ 0 $ 開始計數 ),若 $ j_x = 1 $ 則代表 $ a_{i, x + 1} $ 與 $ a_{i, x + 2} $ 連線,否則不連線;
轉移直接轉(lxyt說),但我分了很多情況,最後好像還是不對,但過了。。。
時間複雜度:$ \Theta(n \times 2^{2x - 2}) $;
程式碼僅供參考;
點選檢視程式碼
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int n, m;
int a[105][105];
int f[105][(1 << 9)];
bool ck(int i, int j) {
for (int x = 0; x <= m - 2; x++) {
if (a[i][x + 1] + a[i][x + 2] < 2 && ((j >> x) & 1)) return false;
}
return true;
}
int main() {
freopen("merging.in", "r", stdin);
freopen("merging.out", "w", stdout);
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n >> m;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
cin >> a[i][j];
}
}
memset(f, 0x3f, sizeof(f));
for (int j = 0; j < (1 << (m - 1)); j++) {
f[0][j] = 0;
}
for (int i = 1; i <= n; i++) {
for (int j = 0; j < (1 << (m - 1)); j++) {
if (!ck(i, j)) continue;
for (int k = 0; k < (1 << (m - 1)); k++) {
if (!ck(i - 1, k)) continue;
int res = f[i - 1][k];
int ej = -1;
int ek = -1;
int x = 1;
bool vis = false;
while(x <= m) {
ej = m;
ek = m;
if (!a[i][x]) {
x++;
vis = false;
continue;
}
if (!a[i][x - 1] && ((k >> (x - 2)) & 1)) vis = true;
for (int t = x; t <= m; t++) {
if (!((j >> (t - 1)) & 1)) {
ej = t;
break;
}
}
if (((k >> (x - 2)) & 1)) {
ek = ej + 1;
} else {
for (int t = x; t <= m; t++) {
if (i == 1) {
ek = ej + 1;
break;
}
if (!((k >> (t - 1)) & 1)) {
if (!a[i - 1][t]) ek = ej + 1;
else ek = t;
break;
}
}
}
if (ej != ek || vis) res++;
x = ej + 1;
}
f[i][j] = min(f[i][j], res);
}
}
}
int ans = 0x3f3f3f3f;
for (int i = 0; i < (1 << (m - 1)); i++) {
ans = min(ans, f[n][i]);
}
cout << ans;
return 0;
}
光線追蹤 30pts;
賽時最暴力的暴力30pts;
正解:可以發現每次插入的矩形只有左邊和下邊的邊能夠產生貢獻;
所以用斜率當下標建一棵線段樹,然後區間插入+單點查詢即可解決;
難點:想到用斜率當下標建一棵線段樹(可以用 $ double $ 型別當下標,但最好還是離線將所有要用到的斜率離散化一下);
注意特判斜率等於零和不存在的情況;
時間複雜度:設一共有 $ k $ 個不同的斜率,則時間複雜度為: $ \Theta(q \log k) $;
點選檢視程式碼
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
int q;
double a[1000005];
int cnt;
int qx[500005], qy[500005], hx[500005], hy[500005], x[500005], y[500005], s[500005];
pair<int, int> pcm(pair<int, int> a, pair<int, int> b) {
if (a.first < b.first) return a;
if (a.first > b.first) return b;
if (a.first == b.first) {
if (a.second > b.second) return a;
else return b;
}
}
namespace SEG{
inline int ls(int x) {
return x << 1;
}
inline int rs(int x) {
return x << 1 | 1;
}
struct sss{
int l, r;
pair<int, int> mi, lz;
}tr[2][5000005];
inline void push_down(int s, int id) {
if (tr[s][id].lz.first != 2e9) {
tr[s][ls(id)].lz = pcm(tr[s][ls(id)].lz, tr[s][id].lz);
tr[s][rs(id)].lz = pcm(tr[s][rs(id)].lz, tr[s][id].lz);
tr[s][ls(id)].mi = pcm(tr[s][ls(id)].mi, tr[s][id].lz);
tr[s][rs(id)].mi = pcm(tr[s][rs(id)].mi, tr[s][id].lz);
tr[s][id].lz = {2e9, 0};
}
}
void bt(int s, int id, int l, int r) {
tr[s][id].l = l;
tr[s][id].r = r;
tr[s][id].mi = {2e9, 0};
tr[s][id].lz = {2e9, 0};
if (l == r) return;
int mid = (l + r) >> 1;
bt(s, ls(id), l, mid);
bt(s, rs(id), mid + 1, r);
}
void add(int s, int id, int l, int r, pair<int, int> d) {
if (tr[s][id].l >= l && tr[s][id].r <= r) {
tr[s][id].mi = pcm(tr[s][id].mi, d);
tr[s][id].lz = pcm(tr[s][id].lz, d);
return;
}
push_down(s, id);
int mid = (tr[s][id].l + tr[s][id].r) >> 1;
if (l <= mid) add(s, ls(id), l, r, d);
if (r > mid) add(s, rs(id), l, r, d);
}
pair<int, int> ask(int s, int id, int pos) {
if (tr[s][id].l == tr[s][id].r) return tr[s][id].mi;
push_down(s, id);
int mid = (tr[s][id].l + tr[s][id].r) >> 1;
if (pos <= mid) return ask(s, ls(id), pos);
else return ask(s, rs(id), pos);
}
}
pair<int, int> px, py;
int main() {
freopen("raytracing.in", "r", stdin);
freopen("raytracing.out", "w", stdout);
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> q;
px = {2e9, 0};
py = {2e9, 0};
for (int i = 1; i <= q; i++) {
cin >> s[i];
if (s[i] == 1) {
cin >> qx[i] >> qy[i] >> hx[i] >> hy[i];
if (qy[i] && hx[i]) a[++cnt] = 1.00 * qy[i] / hx[i];
if (qy[i] && qx[i]) a[++cnt] = 1.00 * qy[i] / qx[i];
if (hy[i] && qx[i]) a[++cnt] = 1.00 * hy[i] / qx[i];
}
if (s[i] == 2) {
cin >> x[i] >> y[i];
if (x[i] == 0 || y[i] == 0) continue;
a[++cnt] = 1.00 * y[i] / x[i];
}
}
a[++cnt] = 0.0;
a[++cnt] = 1000000000.00;
sort(a + 1, a + 1 + cnt);
cnt = unique(a + 1, a + 1 + cnt) - a - 1;
SEG::bt(0, 1, 1, cnt);
SEG::bt(1, 1, 1, cnt);
for (int i = 1; i <= q; i++) {
if (s[i] == 1) {
if (qx[i] == 0) {
py = pcm(py, {qy[i], i});
SEG::add(0, 1, lower_bound(a + 1, a + 1 + cnt, 1.00 * qy[i] / hx[i]) - a, lower_bound(a + 1, a + 1 + cnt, 1000000000.00) - a, {qy[i], i});
continue;
}
if (qy[i] == 0) {
px = pcm(px, {qx[i], i});
SEG::add(1, 1, lower_bound(a + 1, a + 1 + cnt, 0.0) - a, lower_bound(a + 1, a + 1 + cnt, 1.00 * hy[i] / qx[i]) - a, {qx[i], i});
continue;
}
SEG::add(0, 1, lower_bound(a + 1, a + 1 + cnt, 1.00 * qy[i] / hx[i]) - a, lower_bound(a + 1, a + 1 + cnt, 1.00 * qy[i] / qx[i]) - a, {qy[i], i});
SEG::add(1, 1, lower_bound(a + 1, a + 1 + cnt, 1.00 * qy[i] / qx[i]) - a, lower_bound(a + 1, a + 1 + cnt, 1.00 * hy[i] / qx[i]) - a, {qx[i], i});
}
if (s[i] == 2) {
if (x[i] == 0) {
cout << py.second << '\n';
continue;
}
if (y[i] == 0) {
cout << px.second << '\n';
continue;
}
double k = 1.00 * y[i] / x[i];
int pos = lower_bound(a + 1, a + 1 + cnt, k) - a;
pair<int, int> yy = SEG::ask(0, 1, pos);
pair<int, int> xx = SEG::ask(1, 1, pos);
double nowx = 1.00 * yy.first / k;
if (nowx < 1.00 * xx.first) {
cout << yy.second << '\n';
} else if (nowx > 1.00 * xx.first) {
cout << xx.second << '\n';
} else {
cout << max(yy.second, xx.second) << '\n';
}
}
}
return 0;
}