應用人工智慧有助心理學發展
來源: 中國社會科學報
摘要:人工智慧及相關技術的發展,為心理學研究提供了突破性的研究方法和工具;心理學對大腦機制的研究成果運用於人工智慧領域,也推動著人工智慧研究的進步。
心理學同人工智慧聯絡緊密,自1956年人工智慧的概念提出以來,心理學家同人工智慧研究者進行了很多合作研究。如2018年5月,英國《自然》(Nature)雜誌刊登了英國倫敦大學神經科學家和英國DeepMind團隊人工智慧研究員合作完成的一項研究成果,他們利用深度學習技術成功模擬人類大腦的空間導航能力。此類研究向人們展示了人工智慧技術在心理學研究中的應用前景。
應用於心理測量
互動進化計算(Interactive Evolutionary Computation,IEC)屬於人工智慧領域的一種演算法,是一種將人的智慧評價同進化計算機有機結合的智慧計算方法。目前,互動進化計算在心理測量領域的研究中得到很好的應用。日本學者塔卡西(Hideyuki Takagi)等人將互動進化計算應用於對精神分裂症患者的心理測量和評估中,輔助驗證“精神分裂症患者所感受到的情緒表達的動態範圍比健康人所感知到的範圍更窄”這一假設,該研究是IEC運用於心理測量領域的開創性研究之一。在此之前,精神病學家和心理治療師認為精神分裂症患者在情感表達方面存在問題,但是由於缺乏定量方法衡量他們的情感表達能力,所以無法以此作為診斷依據。互動進化計算提供了一種定量的測量方法,使得對情緒感知範圍的測量成為可能。之後,張琰等人利用互動進化計算技術,以高社交焦慮和低社交焦慮大學生為研究物件,成功地測量並比較了兩者在面孔情緒識別的動態感知範圍上的差異性。這些研究表明:互動進化計算作為一種智慧演算法,適用於心理健康測量。
此外,人工智慧領域的貝葉斯網路和粗糙集分析方法對心理測量資料的挖掘起到了優於一般心理學統計方法的作用。餘嘉元發現,利用貝葉斯網路開發的智慧自適應測驗可以顯著地減少教育和心理測試中題目的數量,並且相對於紙筆測驗,這種自適應測驗獲取的資訊更多。他還發現,人工智慧中的粗糙集分析方法可以對心理測量資料進行挖掘,得到更準確細緻的分析結果。
應用於心理變數預測
近年來,人工智慧技術中的表情識別技術被用於心理學人格預測的研究中。以往確定大五人格型別的方法主要是問卷測量,但這需要花費大量時間。加夫裡列斯庫(Mihai Gavrilescu)在2016年建立了一種新的非侵入性系統,這一系統可以根據面部動作編碼獲得的面部特徵來確定人的大五人格特徵。之後,加夫裡列斯庫和維齊雷努(Nicolae Vizireanu)在2017年提出了一種基於面部動作編碼系統的面部特徵分析系統,用以預測人們的16PF人格特徵。該系統能夠在1分鐘內準確預測個體的16PF人格,比16PF人格問卷更快速、更實用,適合於短時間內預測人的個性特徵。
除了人格量表的預測,人工智慧技術中的人工神經網路(Artificial Neural Networks,ANN)、擬最優的貝葉斯學習器(quasi-optimal Bayesian learner)和支援向量迴歸機(Support Vector Regression,SVR)也被應用於心理學研究中,用以預測個體的認知和心理健康狀況。
人的社會認知加工過程同人工神經網路的資訊加工過程存在類似性,因此,許多研究者針對社會認知過程中的一些心理變數建立了各具特點的人工神經網路預測模型。此外,人工神經網路技術在心理健康預測中也得到較好應用。比如,塞雷蒂(Alessandro Serretti)等人應用人工神經網路技術成功對臨床情緒失調中的抑鬱情緒進行了預測。
擬最優的貝葉斯學習器能夠模擬在不斷變化的環境中人們行為和信念的變化。瓦吉(Matilde M. Vaghi)等人將擬最優的貝葉斯學習器模擬的資料與強迫症及健康人群的行為資料進行比較,以探究兩者的行為和信念分別如何隨時間變化;並且將貝葉斯學習模型中的不同引數作為預測因子來量化和比較強迫症患者同健康人行為與信念表現上的差異。
支援向量迴歸機是在計算機統計學習理論基礎上發展出來的一種新的、有效的機器學習方法,其原理類似於人工神經網路。相較於人工神經網路,支援向量迴歸機能夠克服前者大樣本取樣要求的使用侷限性。一些研究者使用支援向量迴歸機技術對研究物件的心理特徵進行預測,如黃辛隱等人通過支援向量迴歸機技術,採用高低特質焦慮組面部表情的識別率,成功地預測了他們的特質焦慮分數。
應用於心理症狀識別與診斷
神經網路技術是人工智慧領域的技術之一。陳冰梅等人利用神經網路技術開發了一套兒童心理障礙診斷系統,這一系統可以診斷95%以上的兒童心理障礙,包含17大類、61種常見的兒童心理障礙,如多動症、品行障礙、精神發育遲滯、抑鬱症、焦慮症、強迫症、抽動障礙、普遍性發育障礙等。此外,該診斷系統還能夠對每種障礙提出處理意見。
表情識別技術和聲音檢測技術在心理症狀的識別和診斷中也得到了廣泛運用。簡(Asim Jan)等人在2014年通過對抑鬱症患者的自然面部表情特徵的提取,開發了一種自動化識別系統來計算他們的貝克抑鬱量表的得分,以輔助抑鬱症的診斷;科恩(Jeffrey F. Cohn)等人通過面部識別和聲音檢測技術來自動識別抑鬱症。此外,簡等人又於2017年提出了一種人工智慧系統來輔助診斷抑鬱症,這一系統可以通過個體聲音和麵部表情的變化來計算他們的貝克抑鬱量表的得分。
還有一些研究利用動作識別技術或表情識別和動作識別技術相結合的方法進行心理症狀的識別。阿爾霍沃寧(Sharifa Alghowinem)等人利用澳大利亞、美國和德國進行的抑鬱症臨床訪談視訊記錄,通過對參與者的目光注視和頭部姿勢資訊的提取進行抑鬱識別。此外,一些研究者將手勢動作和身體動作也納入分析識別系統。喬西(Jyoti Joshi)等人對抑鬱症患者和正常個體在訪談視訊中的表情、手勢和頭部動作進行提取分析,以進行自動化的抑鬱識別。拉賈戈帕蘭(Shyam Sundar Rajagopalan)等人在自然環境中收集並標註了一組兒童自我刺激行為視訊資料集,該資料集可以作為一個很好的參考基準來識別兒童在日常活動中的自我刺激行為,並輔助開發出早期的診斷和干預技術,方便臨床醫生、父母和照護者的診斷與照料。
目前,在人工智慧技術應用於心理症狀識別與診斷的研究中,利用多模型(如視覺和聽覺模型相結合)、多種資訊融合(如面部表情和身體動作資訊融合)的方法進行心理症狀的識別和診斷已初具成果。
未來發展方向
心理學研究以對人類行為的預測和控制為目標,通過對研究物件外顯行為的探究來描述、解釋心理現象的一般規律。人工智慧作為一種重要的輔助方法,對心理學變數的測量和預測發揮了重要作用,並可以輔助一些心理症狀的識別診斷和心理干預。未來兩個學科的研究可以結合當前的時代特點,在以下三個方面進行更多研究。
1.結合大資料技術,利用人工智慧中的機器學習技術建立心理特徵預測模型。人工智慧技術與大資料技術的結合可以對大規模的心理資料進行分析和建模,基於此,就能對大範圍群體的心理特徵進行及時感知。具體步驟為:通過資料標註對研究物件的心理特徵進行標記;通過轉換、特徵提取等方法進行資料處理;利用人工智慧技術中的機器學習技術建立模型;通過分類和迴歸分析進行模型評估並投入應用。
2.深入人工智慧和認知神經心理學的交叉研究,加強人工智慧體方面的研究。目前,深度神經網路在人工智慧體方面的研究才剛剛起步,未來可以藉助認知神經心理學對人腦神經系統的結構、資訊加工、記憶和學習機制的研究成果,利用深度神經網路技術從人腦工作的機理上進行模擬。這不僅可以推動人工智慧模型的改進,還能為心理學研究提供突破性的研究工具。
3.加強情感培養的機器演算法和情感機器人的研究。一些學者認為,未來人工智慧的研究應加強對“情緒”和“情感”的瞭解,而“情緒”方面的研究也是心理學領域近年來備受關注的研究領域。未來兩個學科的研究在這一領域的結合,將會使兩個學科領域的研究碰撞出更具社會應用價值的火花。
綜上所述,人工智慧及相關技術的發展,為心理學研究提供了突破性的研究方法和工具;心理學對大腦機制的研究成果運用於人工智慧領域,也推動著人工智慧研究的進步。通過結合人工智慧和心理學兩個領域的最新研究成果開展交叉研究,可以更好解決兩個學科領域的科學問題,這兩個學科也將在相互結合中推動彼此的發展,並提升各自的社會應用價值。
未來智慧實驗室是人工智慧學家與科學院相關機構聯合成立的人工智慧,網際網路和腦科學交叉研究機構。
未來智慧實驗室的主要工作包括:建立AI智慧系統智商評測體系,開展世界人工智慧智商評測;開展網際網路(城市)雲腦研究計劃,構建網際網路(城市)雲腦技術和企業圖譜,為提升企業,行業與城市的智慧水平服務。
如果您對實驗室的研究感興趣,歡迎加入未來智慧實驗室線上平臺。掃描以下二維碼或點選本文左下角“閱讀原文”
相關文章
- 遊戲心理學-6大效應延伸應用遊戲
- 解析AI人工智慧:浪潮、技術、應用發展AI人工智慧
- CNNIC:生成式人工智慧應用發展報告(2024)CNN人工智慧
- 遊戲心理學研究:基於發展心理學與社會時鐘的遊戲設計遊戲設計
- 對人工智慧的應用、發展及其影響的思考人工智慧
- 塞維利亞大學:疫情期間家中種植物有助於改善心理健康
- 澳大利亞昆士蘭大學:研究顯示退出社交網路或有助減輕心理壓力
- 人工智慧與深度學習的未來:社會影響、應用與研究進展人工智慧深度學習
- 清華心理學教授彭凱平:人工智慧與人生幸福人工智慧
- 淺談人工智慧在銀行領域的應用及未來發展趨勢人工智慧
- 德勤諮詢:2021年製造業+人工智慧創新應用發展報告人工智慧
- 深度學習在攝影技術中的應用與發展深度學習
- 2021移動應用發展趨勢
- 人工智慧發展歷史人工智慧
- 品質專線應用進展及發展趨勢
- 分析人工智慧名片未來5年在企服應用市場的發展前景人工智慧
- 中國信通院《人工智慧發展白皮書-產業應用篇(2018年)》大解析人工智慧產業
- 美國心理學會:研究發現憤怒可能助長老年人慢性病的發展
- 社會心理學
- 2019年機器學習:追蹤人工智慧發展之路機器學習人工智慧
- 《中國人工智慧ABC人才發展報告》釋出,演算法和應用類人才短缺人工智慧演算法
- 基於大模型的人工智慧應用開發大模型人工智慧
- 人工智慧發展的歷史人工智慧
- 帶你瞭解 WebAssembly 的發展、應用與開發Web
- Web3的應用發展及其影響Web
- Android應用架構的發展和實踐Android應用架構
- 北京師範大學:人工智慧與未來教育發展研究人工智慧
- 無AI不測試:人工智慧時代背景下,如何發展與應用自動化測試?AI人工智慧
- 清華大學&中國人工智慧學會:2019人工智慧發展報告(附下載)人工智慧
- 學習Python有什麼用?發展如何?Python
- 【人工智慧】人工智慧應用選型指南人工智慧
- 人工智慧--運維應用人工智慧運維
- 人工智慧應用場景人工智慧
- 為何要學習心理學
- 重新平衡人工智慧發展之路人工智慧
- 人工智慧技術發展綜述人工智慧
- 人工智慧產業發展前景可期人工智慧產業
- 人工智慧發展簡史與展望人工智慧