Linux核心連結串列-通用連結串列的實現

新一發表於2017-12-12

  最近程式設計總想著參考一些有名的開原始碼是如何實現的,因為要寫連結串列就看了下linux核心中對連結串列的實現。

  連結串列是一種非常常見的資料結構,特別是在動態建立相應資料結構的情況下更是如此,然而在作業系統核心中,動態建立相應的資料結構尤為頻繁。由於不帶資料域所以Linux中的這種連結串列是通用的,在如何情況下,只要需要連結串列的資料結構包含它就行了。

  連結串列只包含兩個指標 

struct list_head {
    struct list_head *next, *prev;
};

  資料結構如果需要連結串列只需要包含它就行

typedef struct s_DASTUC
{
  int ds_stus;
  int ds_type;
  struct list_head ds_list;
  int ds_count;          
}

  通過連結串列的地址獲取連結串列所在的資料結構地址

#define list_entry(ptr, type, number)    \
                    ((type *)((char *)(ptr) - (unsigned long)(&((type *)0)->number)))

網上看到過有人說為什麼不把連結串列放到資料結構首部,這樣連結串列所在的地址就是資料結構的地址,何必實現list_entry(ptr, type, number),不要去限制資料結構呼叫連結串列的寫法。

  詳細的網上都有部落格了,這裡博主只是為了記下知識點而已,下面是從Linux原始碼List.h拿出來的部分實現:

  1 #ifndef _MYLIST_H
  2 #define _MYLIST_H
  3 
  4 #define LIST_POISON1    NULL
  5 #define LIST_POISON2    NULL
  6 
  7 /*
  8  * Simple doubly linked list implementation.
  9  *
 10  * Some of the internal functions ("__xxx") are useful when
 11  * manipulating whole lists rather than single entries, as
 12  * sometimes we already know the next/prev entries and we can
 13  * generate better code by using them directly rather than
 14  * using the generic single-entry routines.
 15  */
 16 
 17 struct list_head {
 18     struct list_head *next, *prev;
 19 };
 20 
 21 #define LIST_HEAD_INIT(name) { &(name), &(name) }
 22 
 23 #define LIST_HEAD(name) \
 24     struct list_head name = LIST_HEAD_INIT(name)
 25 
 26 static inline void INIT_LIST_HEAD(struct list_head *list)
 27 {
 28     list->next = list;
 29     list->prev = list;
 30 }
 31 
 32 /*
 33  * Insert a new entry between two known consecutive entries.
 34  *
 35  * This is only for internal list manipulation where we know
 36  * the prev/next entries already!
 37  */
 38 static inline void __list_add(struct list_head *new,
 39                   struct list_head *prev,
 40                   struct list_head *next)
 41 {
 42     next->prev = new;
 43     new->next = next;
 44     new->prev = prev;
 45     prev->next = new;
 46 }
 47 
 48 
 49 /**
 50  * list_add - add a new entry
 51  * @new: new entry to be added
 52  * @head: list head to add it after
 53  *
 54  * Insert a new entry after the specified head.
 55  * This is good for implementing stacks.
 56  */
 57 static inline void list_add(struct list_head *new, struct list_head *head)
 58 {
 59     __list_add(new, head, head->next);
 60 }
 61 
 62 
 63 
 64 /**
 65  * list_add_tail - add a new entry
 66  * @new: new entry to be added
 67  * @head: list head to add it before
 68  *
 69  * Insert a new entry before the specified head.
 70  * This is useful for implementing queues.
 71  */
 72 static inline void list_add_tail(struct list_head *new, struct list_head *head)
 73 {
 74     __list_add(new, head->prev, head);
 75 }
 76 
 77 /*
 78  * Delete a list entry by making the prev/next entries
 79  * point to each other.
 80  *
 81  * This is only for internal list manipulation where we know
 82  * the prev/next entries already!
 83  */
 84 static inline void __list_del(struct list_head * prev, struct list_head * next)
 85 {
 86     next->prev = prev;
 87     prev->next = next;
 88 }
 89 
 90 /**
 91  * list_del - deletes entry from list.
 92  * @entry: the element to delete from the list.
 93  * Note: list_empty() on entry does not return true after this, the entry is
 94  * in an undefined state.
 95  */
 96 static inline void list_del(struct list_head *entry)
 97 {
 98     __list_del(entry->prev, entry->next);
 99     entry->next = LIST_POISON1;
100     entry->prev = LIST_POISON2;
101 }
102 
103 /**
104  * list_replace - replace old entry by new one
105  * @old : the element to be replaced
106  * @new : the new element to insert
107  *
108  * If @old was empty, it will be overwritten.
109  */
110 static inline void list_replace(struct list_head *old,
111                 struct list_head *new)
112 {
113     new->next = old->next;
114     new->next->prev = new;
115     new->prev = old->prev;
116     new->prev->next = new;
117 }
118 
119 static inline void list_replace_init(struct list_head *old,
120                     struct list_head *new)
121 {
122     list_replace(old, new);
123     INIT_LIST_HEAD(old);
124 }
125 
126 /**
127  * list_del_init - deletes entry from list and reinitialize it.
128  * @entry: the element to delete from the list.
129  */
130 static inline void list_del_init(struct list_head *entry)
131 {
132     __list_del(entry->prev, entry->next);
133     INIT_LIST_HEAD(entry);
134 }
135 
136 /**
137  * list_move - delete from one list and add as another's head
138  * @list: the entry to move
139  * @head: the head that will precede our entry
140  */
141 static inline void list_move(struct list_head *list, struct list_head *head)
142 {
143     __list_del(list->prev, list->next);
144     list_add(list, head);
145 }
146 
147 /**
148  * list_move_tail - delete from one list and add as another's tail
149  * @list: the entry to move
150  * @head: the head that will follow our entry
151  */
152 static inline void list_move_tail(struct list_head *list,
153                   struct list_head *head)
154 {
155     __list_del(list->prev, list->next);
156     list_add_tail(list, head);
157 }
158 
159 /**
160  * list_is_last - tests whether @list is the last entry in list @head
161  * @list: the entry to test
162  * @head: the head of the list
163  */
164 static inline int list_is_last(const struct list_head *list,
165                 const struct list_head *head)
166 {
167     return list->next == head;
168 }
169 
170 /**
171  * list_empty - tests whether a list is empty
172  * @head: the list to test.
173  */
174 static inline int list_empty(const struct list_head *head)
175 {
176     return head->next == head;
177 }
178 
179 /**
180  * list_empty_careful - tests whether a list is empty and not being modified
181  * @head: the list to test
182  *
183  * Description:
184  * tests whether a list is empty _and_ checks that no other CPU might be
185  * in the process of modifying either member (next or prev)
186  *
187  * NOTE: using list_empty_careful() without synchronization
188  * can only be safe if the only activity that can happen
189  * to the list entry is list_del_init(). Eg. it cannot be used
190  * if another CPU could re-list_add() it.
191  */
192 static inline int list_empty_careful(const struct list_head *head)
193 {
194     struct list_head *next = head->next;
195     return (next == head) && (next == head->prev);
196 }
197 
198 #define __list_for_each(pos, head) \
199                     for (pos = (head)->next; pos != (head); pos = pos->next)
200 
201 #define list_first_entry(ptr, type, member) \
202                     list_entry((ptr)->next, type, member)
203 #define list_entry(ptr, type, number)    \
204                     ((type *)((char *)(ptr) - (unsigned long)(&((type *)0)->number)))
205 
206 #endif

 

相關文章