[賽記] csp-s模擬3

Peppa_Even_Pig發表於2024-09-23

奇觀 55pts

賽時打的 $ \Theta(n^5) $ 和 $ m = 0 $ 的特殊性質拿了55pts;

考慮正解,首先,$ CCF $ 這三個字母是可以分開維護的;

對於 $ C $,其可以看作一個連了四個點的線段,對於 $ F $,其可以看作一個連了三個點的線段在再最後分別多連兩個點;

設 $ f_{i, j} $ 表示維護一個連了 $ i $ 個點的線段,最後一個點為 $ j $ 時的方案數,有轉移:

\[ f_{i, j} = \sum_{k \ is \ connected \ to \ i}^{k \leq n} f_{i - 1, k} \]

這東西可以字首和維護,然後我們只需維護到 $ i = 4 $ 即可;

最後 $ C $ 直接算,對於 $ F $ 列舉最後一位的數 $ j $,答案即為 $ \sum_{j = 1}^{n} f_{3, j} \times (d_j) ^ 2 $,其中 $ d_j $ 為能與 $ j $ 相連的點數;

點選檢視程式碼
#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>
using namespace std;
#define int long long
const long long mod = 998244353;
int n, m;
long long f[5][100005], g[5][100005];
vector<int> v[100005];
main() {
	freopen("a.in", "r", stdin);
	freopen("a.out", "w", stdout);
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	cin >> n >> m;
	int x, y;
	for (int i = 1; i <= m; i++) {
		cin >> x >> y;
		v[x].push_back(y);
		v[y].push_back(x);
	}
	for (int i = 1; i <= n; i++) {
		v[i].push_back(0);
		v[i].push_back(i);
		v[i].push_back(n + 1);
		sort(v[i].begin(), v[i].end());
		v[i].erase(unique(v[i].begin(), v[i].end()), v[i].end());
	}
	for (int i = 1; i <= n; i++) {
		f[1][i] = 1;
		g[1][i] = g[1][i - 1] + 1;
	}
	for (int i = 2; i <= 4; i++) {
		for (int j = 1; j <= n; j++) {
			for (int k = 1; k < v[j].size(); k++) {
				f[i][j] += (g[i - 1][v[j][k] - 1] - g[i - 1][v[j][k - 1]] + mod) % mod;
				f[i][j] = (f[i][j] + mod) % mod;
			}
		}
		for (int j = 1; j <= n; j++) {
			g[i][j] = g[i][j - 1] + f[i][j];
			g[i][j] = (g[i][j] + mod) % mod;
		}
	}
	long long ans = g[4][n] * g[4][n] % mod;
	long long sum = 0;
	for (int i = 1; i <= n; i++) {
		long long su = v[i].size() - 2;
		su = n - su;
		sum = (sum + f[3][i] * su % mod * su % mod + mod) % mod;
	}
	ans = ans * sum % mod;
	cout << ans;
	return 0;
}

鐵路 60pts

賽時說不清的亂搞;

其實並不需要真的加點,只需要用並查集維護一下哪些點是被刪掉的,然後把這個連通塊連到這個新點即可;

好吧,其實原題解寫的就這麼簡潔,所以我也不想寫了

點選檢視程式碼
#include <iostream>
#include <cstdio>
using namespace std;
int n, m;
struct sss{
	int t, ne;
}e[2000005];
int h[2000005], cnt;
void add(int u, int v) {
	e[++cnt].t = v;
	e[cnt].ne = h[u];
	h[u] = cnt;
}
int f[500005][25];
int fa[1000005], dep[1000005];
int id[1000005];
int find(int x) {
	if (x != fa[x]) fa[x] = find(fa[x]);
	return fa[x];
}
void dfs(int x, int faa) {
	f[x][0] = faa;
	dep[x] = dep[faa] + 1;
	for (int i = h[x]; i; i = e[i].ne) {
		int u = e[i].t;
		if (u == faa) continue;
		dfs(u, x);
	}
}
int ans;
int lca(int x, int y) {
	if (x == y) return x;
	if (dep[x] < dep[y]) swap(x, y);
	for (int i = 20; i >= 0; i--) {
		if (dep[f[x][i]] >= dep[y]) x = f[x][i];
	}
	if (x == y) return x;
	for (int i = 20; i >= 0; i--) {
		if (f[x][i] != f[y][i]) {
			x = f[x][i];
			y = f[y][i];
		}
	}
	return f[x][0];
}
void w(int x, int y, int now) {
	int sum = 0;
	x = id[x];
	y = id[y];
	int lc = find(lca(x, y));
	id[now] = lc;
	while(find(x) != lc) {
		fa[find(x)] = lc;
		x = find(f[x][0]);
		sum++;
	}
	while(find(y) != lc) {
		fa[find(y)] = lc;
		y = find(f[y][0]);
		sum++;
	}
	ans -= sum;
}
int main() {
	freopen("a.in", "r", stdin);
	freopen("a.out", "w", stdout);
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	cin >> n >> m;
	int x, y;
	for (int i = 1; i <= n - 1; i++) {
		cin >> x >> y;
		add(x, y);
		add(y, x);
	}
	for (int i = 1; i <= n + m; i++) {
		fa[i] = i;
		id[i] = i;
	}
	dfs(1, 0);
	for (int j = 1; j <= 20; j++) {
		for (int i = 1; i <= n; i++) {
			f[i][j] = f[f[i][j - 1]][j - 1];
		}
	}
	ans = n;
	for (int i = 1; i <= m; i++) {
		cin >> x >> y;
		w(x, y, n + i);
		cout << ans << '\n';
	}
	return 0;
}

To be continued...

相關文章