摘要
本篇報告構建了一個完整的可複用的 人工智慧阿爾法策略框架。
本篇報告用AI對基本面、財務、交易型等 282個因子 做了單因子策略研究和多個維度上的績效分析,並 發掘了在短、中、長週期上多個夏普比率超過1.5 、年化收益超過 30% 的因子。
本篇報告也對AI和傳統方法的效果做了對比,相同因子下,AI的效果遠超傳統方法,收益有100%以上的提升,這主要得益於StockRanker非線性模型學習能力、大資料和強大計算資源等方面相較於傳統人工的優勢, 能最大限度的發掘因子的價值。
圖:因子收益能力挖掘:AI比傳統方法提升超過100
目錄
1、引言
2、阿爾法體系
2.1 多因子模型的發展及基本理論
2.2 傳統阿爾法體系
2.3 交易型阿爾法體系
2.4 阿爾法體系模型的評價標準
2.5 阿爾法體系預測的一致性問題
3、AI阿爾法體系
3.1 AI阿爾法構建思路
3.2 一些顯著的因子舉例
3.3 AI阿爾法體系構建
4、AI策略構建
4.1 AI策略開發流程
4.2 AI Alphas研究設計
4.3 策略引數設定
4.4 分析結果
4.4.1 總體概覽
4.4.2 按時間段劃分
4.4.3 按因子週期劃分
4.4.4 因子收益發掘能力對比
4.4.5 風格因子暴露分析
4.4.6 交易成本敏感性分析
5、總結與展望
6、參考文獻
7、附錄
1、引言
近年來,量化投資行業得到了迅速的發展,隨著理論升級和技術更新,Barra風險結構模型逐步得到更廣泛和更深度的應用。多因子模型為Barra風險結構模型的一個簡化模型,其基本假設就是相似的資產會有相似的回報。由於某些特定的原因(因子),資產的收益也會表現出一致性,例如價量變化、行業、規模或者利率變化。多因子模型旨在發掘能夠帶來超額收益的阿爾法因子,並且確定收益率隨因子變化的敏感程度。
傳統多因子模型在 A 股過去若干年內也獲得較為穩健的超額收益。然而,由於市值效應在 A 股市場的影響過於明顯,導致傳統多因子模型或多或少都受其影響。 尤其是自2016年11月以來,隨著A股市場風格的急劇變化,策略穩定性受到了一定衝擊。從目前市值因子的收益波動性而言,小市值因子超額收益的黃金時代可能已經過去。2017,券商研報構建了交易型阿爾法選股體系,旨在挖掘短期盈利機會,對原有傳統阿爾法選股體系形成極大補充。
本篇報告將開創性地構建全新的多因子模型體系——人工智慧阿爾法選股體系,這又將成為傳統阿爾法選股體系和交易型阿爾法選股體系的極大補充,從而更深入地推進多因子模型體系的理論和實證研究。人工智慧阿爾法選股體系簡稱AI阿爾法體系,是利用人工智慧領域中的機器學習技術,將挖掘因子收益的潛力發揮極致。
本篇報告中,我們對基本面因子、財務因子、交易型因子共計282個因子在短期、中期、長期的因子收益進行了測試,因子一部分來自WorldQuant、券商研報,一部分來自於BigQuant因子庫,因子資料都為個股日頻資料。本文采取的是StockRanker AI策略,以2011.01.01-2015.12.31的資料作為訓練集,以2016.01.01的資料作為測試集,並驗證模型在測試集上回測的績效結果。其中策略收益率最高的為持倉40天的總市值排序因子,2016.01.01到2017.01.01期間年化收益為108%,即使小市值因子在今年發生回撤,AI阿爾法體系下的StockRanker策略遠遠超過了傳統阿爾法體系下的小市值策略。
AI阿爾法體系是對傳統阿爾法體系和交易型阿爾法體系的補充,也是以機器學習為代表的人工智慧技術在量化交易領域比較成熟的應用,是一種有全新思路、獨立設計的交易體系。希望AI阿爾法體系的構建,能夠展現人工智慧技術在金融量化領域發揮真正威力。
2、阿爾法體系
在介紹AI阿爾法體系之前,我們有必要對阿爾法體系的發展及基本理論進行梳理。
2.1 多因子模型的發展及基本理論
- 資本資產定價模型(CAPM)
資本資產定價模型(Capital Asset Pricing Model, CAPM)是現代金融市場價格理論的支柱,由美國學者威廉· 夏普(William Sharpe) 等人於1964年在資產組合理論的基礎上發展起來。它開啟了資產風險分類的研究程式。
其中,ri: 資產i的回報, rf: 無風險收益,rm: 市場收益率
- 套利定價理論(APT)
套利定價理論是一種均衡模型,用來研究證券價格是如何決定的。它假設證券的收益是由一系列產業方面和市場方面的因素確定的。當兩種證券的收益受到某種或某些因素的影響時,兩種證券收益之間就存在相關性。
套利定價理論模型為:
- 多因子模型(MFM)
現代金融理論認為,股票的預期收益是對股票持有者所承擔風險的補償,多因子模型正是對於風險——收益關係的定量表達。多因子模型定量刻畫了股票預期收益率與股票在每個因子上的因子載荷(風險敞口),以及每個因子每單位因子載荷(風險敞口)的因子收益率之間的線性關係。 多因子模型(Multiple-Factor Model, MFM)正是基於 APT 模型的思想發展出來的完整的風險模型。
多因子模型的一般表示式:
其中,
Xik: 股票i在因子k上的因子暴露,fk: 因子k的因子收益,μi: 股票i的殘差收益率
2.2 傳統阿爾法體系
量化投資以策略績效為目標導向,因此策略最後實現的收益風險特徵是衡量阿爾法體系好壞的最終標準。但是,阿爾法體系的本質即是收益預測,因此在觀察策略實際收益率之前,我們可以透過一些定量的方法,計算阿爾法體系的收益預測是否精確、是否顯著,這樣的判斷將更有利於我們瞭解阿爾法體系的特性,提高投資成功的機率。
在選股型體系中,收益率分解是基本的假設前提。我們認為任意股票在同一時刻暴露於多種不同的風險因素下,它們之間的共同作用形成了股票價格的波動。因此,我們致力於尋找對絕大部分股票價格波動都有影響的共同因素,即風格因子,這部分收益則被稱為風格收益。 而風格因子不可解釋的部分,則被認為是個股自身特有的屬性,即特質因子,這部分收益則被稱為阿爾法收益。
即,股票收益率 = 風格收益 + 阿爾法收益。
阿爾法收益包含了模型之外的風格因子的收益,一旦將該因子加入模型,其目的為捕獲該因子的阿爾法收益,因子傳統阿爾法體系的很大一部分工作是挖掘新的有效阿爾法因子,使其阿爾法收益得到釋放,因此該體系稱為傳統阿爾法體系 。
傳統阿爾法體系最基本的假設是:具有類似“屬性”的股票,即因子類似,在市場上應該有相似的收益率。這些類似的屬性可以是相同的行業、相似的交易屬性(比如交易價格、交易量、市值大小、波動率等)、相似的財務屬性(來自於三張財務報表的各種比例或者增長率等)、相似的估值屬性(PB、PE、PS、PCF 等)。
假設一個投資組合由N個股票組成,它們在組合中的權重分別為hP1,hP2,…,hPN,則組合的收益率為:
其中,XPk=∑Ni=1hPi∗Xik
2.3 交易型阿爾法體系
傳統阿爾法體系的收益來源,往往集中於財務資料的挖掘、分析師一致預期資料的挖掘,而只有一小部分是中低頻價量特徵的資料。而在 A 股,市場交易行為具有很強的隨機性,機構投資者的交易效率較之成熟市場亦不十分有效,加之 T+0、融券賣空等交易機制的缺乏,導致在短週期由於交易行為所產生的定價非有效十分常見。只要是投資者交易產生的價格序列,就一定不是隨機序列,而這一特徵在 A 股更為明顯。
交易型阿爾法體系關注的特徵主要是價格和成交量。對價量特徵進行因子化處理的最大優勢在於,避免了利用單一模式在時間序列上進行買點和賣點的選擇,因為這牽涉到開平倉引數的敏感性問題等,會帶來很大的不確定性和引數過擬合的問題。交易型阿爾法體系精髓在於,以當前市場的執行特徵,尋找價格執行的規律。如果說傳統阿爾法體系更加重視因子背後的價值投資邏輯,那麼交易型阿爾法體系則更加重視交易行為背後的規律顯著性,從某種意義上而言,這恰恰是最為直白樸素的投資邏輯。
2.4 阿爾法體系的評價標準
在介紹AI阿爾法新體系之前,我們有必要對阿爾法體系的評價標準再做些許的梳理,而這樣的標準既適用於傳統阿爾法體系和交易型阿爾法體系。因為AI阿爾法體系不同之處在於更能充分挖掘因子收益,因此基於IC值的評價標準同樣也適用於AI阿爾法體系。
阿爾法體系的目標應是針對阿爾法收益的預測,而不是針對股票整體收益率的預測。而評價阿爾法體系的標準也應是計算其對阿爾法收益的預測是否可靠,而業界衡量這一可靠性最常用的指標就是因子IC值。
因子的 IC 值一般是指個股第t期在因子上的暴露度與t+1期的收益率的相關係數。因子 IC 值反映的是個股下期收益率和本期因子暴露度的線性相關程度,表現出使用該因子進行收益率預測的穩健性;而回歸法中計算出的因子收益率本質上是一個斜率,反映的是從該因子可能獲得的收益的大小,這並不能代表任何關於穩健性的資訊。當得到各因子 IC 值序列後,我們可以進行計算:
IC 值序列的均值及絕對值均值:判斷因子有效性;
IC 值序列的標準差:判斷因子穩定性;
IC 值序列大於零(或小於零)的佔比:判斷因子效果的一致性。
如上分析可視為對一個阿爾法體系的定量評價,那麼對於若干不同的阿爾法體系就可以有嚴格的好壞區分。並且,從經驗上而言, 預測能力較強的阿爾法體系,其所對應的實際組合獲取超額收益的機率也越高。
傳統阿爾法體系和交易型阿爾法體系都是對因子阿爾法收益進行線性模型的挖掘。其一,其預測能力在剔除市值因子的效用之後究竟有多強的顯著性,值得深思。其二,因子阿爾法收益的挖掘,目前行業內同質化策略嚴重,未來是否還能取得穩定超額收益率還待觀察。其三,隨著以機器學習、深度學習為代表的人工智慧技術的快速發展,對阿爾法收益的挖掘的潛力進一步提高,傳統的阿爾法體系和交易型阿爾法體系為因子收益率和因子暴露的線性模型,可挖掘的因子阿爾法收益有限,而AI阿爾法體系更多是非線性模型,對因子阿爾法收益的挖掘能力更強。
2.5 阿爾法體系預測的一致性問題
至今為止,沒有任何一個投資模型可以解釋市場執行的一切變化規律。在整個阿爾法體系中,策略的構建分為選股和組合兩個步驟。選股即為預測阿爾法收益,組合則為實現阿爾法收益,兩者互相獨立卻又一脈相承。
所謂阿爾法模型預測的一致性問題,指的是阿爾法因子的預測目標與組合實現的收益目標相一致。也就是說,阿爾法模型的預測過程與組合構造的實現過程需要有共同的目標。阿爾法體系的定量評估和一致性問題是我們因子模型的理念基礎,在此基礎上,我們下面將介紹具體的AI阿爾法新體系。
無論是傳統阿爾法體系,還是交易型阿爾法體系,都儘可能做到在因子檢驗、收益預測的過程中,剔除所有風格因素的影響,而在組合構建過程中,保持所有大類風格的中性化處理,最大程度的體現阿爾法模型的預測作用。但AI阿爾法體系有所不同,因為並非傳統的線性模型,深度學習、機器學習相關的收益預測模型又大多是非線性模型,因此其模型的直觀解釋力不如線性模型,但是這並不影響阿爾法體系的預測一致性問題,從本文4.4.5也可以看出,風格因子暴露分析也能夠佐證AI阿爾法體系的預測一致性。AI阿爾法體系本質上也是因子模型,與傳統阿爾法體系和交易型阿爾法體系同屬阿爾法體系框架,都是基於因子預測獲取超額收益率的阿爾法體系。
3、AI阿爾法體系
3.1 AI阿爾法構建思路
傳統阿爾法體系的收益來源,往往集中於財務資料、基本面資料的挖掘,而只有一小部分是中低頻價量特徵的資料。交易型阿爾法體系由於因子主要為價量相關的行情因子,因子體現出短週期的交易行為,所以從超額收益來源、因子有效週期、策略交易頻率、組合換手率、受市場風格影響等方面有很大不同。AI阿爾法體系不僅僅侷限在財務資料、基本面資料和交易行情資料,只要是可能影響股票收益率的任何資料,都是AI阿爾法體系的研究範疇。
3.2 一些顯著的因子舉例
哪些因子具有阿爾法收益?有經驗的專業投資者很容易回答這個問題,這是機器學習中特徵選擇問題。特徵選擇非常關鍵,只有把握關鍵特徵才能對資料達到重要性認識,選擇好的因子,才能獲取超額收益率。
Fama和French 1992年對美國股票市場決定不同股票回報率差異因素的研究發現,股票市場的beta值不能解釋不同股票回報率的差異,而上市公司的市值、賬面市值比、市盈率可以解釋股票回報率的差異。 因此市值、賬面市值比、市盈率就是風格因子。隨著理論和實踐地進一步發展,已經挖掘出來的風格因子有:估值因子、成長因子、財務質量因子、盈利能力因子、槓桿因子、規模因子、動量因子、換手率因子等。
WorldQuant在2015年釋出文章《101 Formulaic Alphas》,透過具體因子公式公開了101個價量因子,這可以看作交易型阿爾法體系的重要里程碑。2017年6月釋出的券商研報文章《基於短週期價量特徵的多因子選股體系》,文章構建了191個短週期價量因子,更是將交易型阿爾法體系的研究向前推了重大一步。比如,價量背離、開盤缺口、異常成交量等。
阿爾法體系本質上就是挖掘因子阿爾法收益的過程,其目標是不斷構造出新的因子。AI阿爾法體系藉助於機器學習、深度學習的最新技術能夠將挖掘因子的任務完成得更加高效。
3.3 AI 阿爾法體系構建
本篇報告構建的阿爾法體系中,總共構建了282個因子,其中資料維度均為日頻率交易資料。本節中,我們對因子的構建給出了詳細的定義方式,因子明細詳見附錄。
表1 因子明細預覽(部分)
注:包含282個因子的完整因子明細表請檢視附錄,在這282個因子中,部分因子來自於WorldQuant,例如‘wq_41’對應的即為《101 Formulaic Alphas 》第41個因子,同理,'gtja_9‘則為券商研報《基於短週期價量特徵的多因子選股體系》第9個因子,以此類推。
4、AI策略構建
BigQuant 提供了眾多量化投資AI演算法 (後續將釋出各演算法benchmark報告),本文主要使用其中的 StockRanker 演算法。StockRanker 是 BigQuant 為選股量化而設計,核心演算法主要是排序學習和梯度提升樹
StockRanker = 選股 + 排序學習 + 梯度提升樹
StockRanker有如下特點:
- 選股:股票市場和影像識別、機器翻譯等機器學習場景有很大不同。StockRanker充分考慮股票市場的特殊性,可以同時對全市場3000只股票的資料進行學習,並預測出股票排序
- 排序學習 (Learning to Rank):排序學習是一種廣泛使用的監督學習方法 (Supervised Learning),比如推薦系統的候選產品、使用者排序,搜尋引擎的文件排序,機器翻譯中的候選結果排序等等。StockRanker 開創性的將排序學習和選股結合,並取得顯著的效果 (具體見即將釋出的benchmark報告)。
- 梯度提升樹 (GBDT):有多種演算法可以用來完成排序學習任務,比如SVM、邏輯迴歸、機率模型等等。StockRanker使用了GBDT,GBDT是一種整合學習演算法,在行業裡使用廣泛。
StockRanker的領先效果還得益於優秀的工程實現,我們在學習速度、學習能力和泛化性等方面,都做了大量的最佳化,並且提供了引數配置,讓使用者可以進一步根據需要調優。
4.1 AI策略開發流程
如下是一個AI策略主要流程的示意圖:
圖1 AI策略開發流程圖
相對於傳統策略開發的複雜流程和調參等大量重複工作,AI策略開發更簡單,將我們的腦力從重複工作上解放出來,專注在更有創造性的地方。
BigQuant 對AI策略開發做了抽象,設計瞭如下開發流程 (以 StockRanker 演算法為例,也可以使用其他演算法):
- 目標:首先定義機器學習目標並標註資料。很多機器學習場景,需要人來做資料標註,例如標註圖片裡的是貓或者狗。對於股票,我們關注的風險和收益是可以明確定義並自動計算出來的。所以,我們一般使用未來N天的收益或者收益風險比作為標註分數。本文使用未來給定天數的收益作為標註
- 資料:我們需要訓練資料集來訓練模型,已經評估資料集來評估效果。在模型引數研究中,我們一般還需要一個測試集用來觀察調參效果
- 特徵(因子):特徵是量化研究的核心之一,在AI策略上,特徵直接影響了模型的學習效果。這也是本文的目的之一,透過AI找出在A股有效的因子,並最大化的挖掘出他們的效果
- 演算法模型:本文使用StockRanker演算法,使用 M.stock_ranker_train.v3 來訓練模型,使用 M.stock_ranker_predict 來做出預測
- 回測:使用回測引擎來根據預測做股票交易,並得到策略收益報告和風險分析,並以此來評估策略的最終效果
4.2 AI alphas研究設計
本文的目的是用AI找出在A股有效的因子,實驗設計如下:
- AI策略框架:StockRanker AI(見 4.1) 單因子策略。根據本文的目的,這裡只做了單個因子情況。策略和模型引數,使用 BigQuant 259人工智慧量化策略模板預設引數。
- 因子來源:本文研究了技術面、財務、基本面等282個因子,來自常見因子、World Quant研究、券商研報等等
- 交易週期:本文研究了因子在短期、中期、長期等不同交易週期下的表現
- 目標標註:未來N天的區間收益,N和交易週期相關
- 訓練資料:2011-01-01到2016-01-01期間的所有A股
- 測試資料:2016-01-01到2017-07-18期間的所有A股
- 評估指標:使用策略絕對收益來作為評估指標
4.3 策略交易引數設定
本節,我們將對AI阿爾法體系進行實證回測分析,其中StockRanker AI策略相關引數設定如下:
- 股票池:所有A股
- 交易成本:買入萬分之3、賣出千分之1.3,不足5元按5元收取
- 買入規則:每天買入全市場所有股票中排序靠前的5只股票
- 賣出規則:每天賣出持倉股票中排序靠後的股票
- 資金管理:每個交易日進行交易,每個交易日等資金配置
- 股票權重:股票權重與股票排序結果成正比
- 回測中的模擬成交剔除停牌、漲跌停等異常情況
4.4 分析結果
我們一共對282個財務因子、基本面因子、交易型因子做了因子有效性測試,驗證其在2016年1月1日至2017年7月18日的策略表現。我們會從關鍵幾個指標對這282個因子做總體描述性介紹,然後透過按時間段劃分和按因子週期劃分,分析夏普比率靠前的20個因子。接下來,我們選取若干有效因子進行因子收益挖掘能力對比,檢查AI阿爾法體系較之於傳統阿爾法體系而言,是否在因子收益挖掘方面具有明顯優勢。然後,我們對持倉組合進行因子風格暴露分析,驗證其因子收益預測一致性。最後,我們按因子週期分類,分別對各個週期上表現最好的因子進行交易成本敏感性統計。
4.4.1 總體概覽
夏普比率、年化收益率、最大回撤、策略波動率是衡量一個策略的最主要的幾個關鍵指標。我們從這四個維度來對本文全部282個因子進行分析,從整體上把握所有因子的表現。
表2 所有因子在短期、中期、長期的因子測試彙總表
圖2 夏普比率分佈圖
圖3 年化收益率分佈圖
圖4 最大回撤分佈圖
圖5 收益波動率分佈圖
4.4.2 按時間段劃分
策略收益率在不同的時間段會受市場環境有明顯的影響,不同的年份策略表現也會有顯著差異,表7到表10是以夏普比率排序,羅列出的不同時間段表現優異的因子。
2016年前20因子
表7 2016年前20因子
- 2017年前20因子
4.4.3 按因子週期劃分
因子可以分為短期因子、中期因子和長期因子,因子週期的差異也會影響策略收益率,表10到表12為不同長度週期中表現優異的因子。
中期因子
表11 中期因子
- 長期因子
4.4.4 因子收益發掘能力對比
和傳統阿爾法體系及交易型阿爾法體系一樣,AI阿爾法體系也是對於因子收益的挖掘,其根本目的是透過因子篩選出優異股票,從而獲得超額收益。本文以2016年表現優異的市值因子和2017年表現的市淨率因子為例,簡單地對比了傳統阿爾法體系和AI阿爾法體系對於因子收益挖掘能力,發現AI阿爾法體系對於因子收益的挖掘能力更強。
為保證策略的可比性,我們需要擬定比較基準,除了運用的策略演算法不一樣,其他條件應保持完全一致。因此,為比較AI阿爾法體系和傳統阿爾法體系在因子挖掘能力的差異,我們的策略演算法都採取相同的平均持有天數,以及相同的持倉股票數量。
- 2016.01-2017.07 市值因子對比
- 2016.01-2017.07 市淨率因子對比
具體策略指標,請看錶13。
表13: 對比結果彙總表13: 對比結果彙總
可以看出,就小市值而言,StockRanker AI策略和傳統阿爾法策略一樣,2016年表現優異,但是2017年風格突變,兩策略紛紛失效,符合市場基本狀況。從年化收益、夏普比率、最大回撤、收益波動率這幾項指標都可以看出,StockRanker AI策略在兩個階段都比傳統阿爾法策略好。就市淨率因子而言,該因子在2016年和2017年表現都不錯,從幾項策略指標而言,其效果也比傳統阿爾法策略好。
在2016年小市值因子表現優異,2017年市淨率因子表現優異。接下來,將各個時間段上表現優異的因子單獨拎出來進行對比。
- 2016年市值因子對比
藍線是StockRanker AI策略的收益率曲線,黑線是傳統小市值策略的收益率曲線,可以看出在2016年,AI阿爾法體系下的Atockranker AI策略較傳統小市值策略而言,因子收益挖掘能力大概是兩倍以上,兩者走勢相關性很高。
- 2017年市淨率因子對比
同上,藍線是StockRanker AI策略的收益率曲線,黑線是傳統市淨率選股策略的收益率曲線,在2017年上半年,AI阿爾法體系下的Atockranker AI策略較傳統市淨率選股策略而言,因子收益挖掘能力大概是兩倍以上,並且策略穩定性更強,回撤也較小,收益曲線更加平滑。
4.4.5 風格因子暴露分析
風格因子暴露分析屬於風險分析的一部分,與收益分析、組合最佳化共同組成了Barra風險結構模型的主體框架。風險分析也可以用來作為檢驗因子策略一致性的重要依據。比如在挖掘因子有效性的時候,發現該因子越小,收益越高,那麼基於該因子開發的策略。不管是傳統阿爾法體系策略、交易型阿爾法體系策略還是AI阿爾法體系,持倉組合在該因子上的充分暴露將是因子潛力得到充分挖掘的重要佐證。
- 短期因子
因子定義:20日成交量標準差
因子來源:券商研報第100個因子
圖6 短期因子區間風險暴露
可以看出,該策略選出的股票在股東因子上數值較大,在規模因子上數值較小。這與20日成交量標準差這一因子有直接關係。
- 中期因子
因子定義:總市值升序排名
因子來源:基本面因子
圖7 中期因子區間風險暴露
因為因子本身就是總市值相關的因子,因此持倉組合在規模因子上風險暴露值很小也很好理解,策略傾向於選擇小市值股票。這與傳統小市值策略是完全一致的,只是AI阿爾法體系對其收益的挖掘更加充分。
- 長期因子
因子定義:市淨率升序排名
因子來源:財務因子
圖8 長期因子區間風險暴露
市淨率為每股股價與每股淨資產的比率,屬於價值因子,因此市淨率因子對於股票的選擇應該聚集在價值型公司股票中。從風險暴露來看,持倉組合在規模因子上數值很大,即傾向於規模很大的股票,一般而言,價值型公司確實是這類股票。同時,該持倉組合在市場因子和流動性因子上風險暴露數值很小,這是因為價值型大市值公司的市場因子(貝塔值)很小。由於在 BigQuant 259 平臺上,流動性因子類別有兩個子因子:換手率和當日成交額佔總市值的百分比,這樣就很好理解為什麼市淨率因子策略選出的股票在流動性因子上暴露很小。
4.4.6 交易成本敏感性分析
本節,我們將考慮交易成本的敏感性問題,以檢驗策略可承受的交易成本(包括衝擊成本)的理論極限空間 。我們按長期因子、中期因子和短期因子進行分類分析,並以各個週期內夏普比率最高的因子作為代表因子,分析其對交易成本的敏感性,其中,短期因子以‘grja_100’為例,中期以‘rank_market_cap_0為例’,長期以‘rank_pb_lf_0’為例。
- 長期因子
圖9 長期因子策略累計超額收益
注:數字1-8表示交易成本逐漸增加,具體見表格14,買入費用和賣出費用都是成交金額的百分比,以下同理。
不同交易成本設定下長期因子策略績效統計:
表14 長期因子策略績效統計
- 中期因子
圖10 中期因子策略累計超額收益
不同交易成本設定下中期因子策略績效統計:
表15 中期因子策略績效統計
- 短期因子
圖11 短期因子策略累計超額收益
不同交易成本設定下短期因子策略績效統計:
表16 短期因子策略績效統計
從結論來看,隨著設定的交易成本不斷增加,策略的夏普比率、年化收益率在逐漸下降。由於因子週期越短,調倉頻率越高,策略對交易成本越敏感。對於持倉較短,調倉較為頻繁的短期因子,其受交易成本影響非常明顯,交易成本的改變會使得一個完全盈利的策略變成虧損的策略,尤其是在市場下跌的時間段。
5、總結與展望
本篇報告創造性地將機器學習這項人工智慧技術應用在金融量化交易領域,構建出了能夠挖掘因子非線性阿爾法收益的AI阿爾法體系。其中,較之於傳統阿爾法體系選股策略和交易型阿爾法體系選股策略,我們的超額收益不僅來源於更為複雜的StockRanker AI演算法,同時來自於基本面因子、財務因子、交易型因子的更豐富地組合構造。
本篇報告對282個因子進行了驗證測試,發現了一部分能夠到來超額收益率的因子,比如在2016年的總市值排序因子和2017年的市淨率排序因子,他們對於收益率的挖掘比傳統阿爾法體系的選股策略更加充分。此外,還捕獲了一些收益不錯的短週期因子,比如券商研報的第100因子(20日成交量標準差),該因子帶來了65%的年化收益。透過不同型別因子、不同週期因子的組合,相信能夠獲得一個資金曲線更為平滑、同質性極低的策略組合。此外,本文還發現,除了短週期因子對交易成本比較敏感之外,中長期因子對交易成本並不敏感。
雖然本文得出不少成果,但依然存在改進空間。例如,本文未對因子進行相關性檢驗以及並沒有測試AI阿爾法體系對多因子收益的挖掘效果,本文未進行風險中性行業中性地調整,這將成為我們下一期報告分析的重點。不僅如此,在下一期報告,我們還將測試AI阿爾法體系尤其是短期因子的策略容量以及構建多因子阿爾法體系。
6、參考文獻
- 101 Formulaic Alphas
- Risk Model Handbook
- 主動投資組合管理
- 多因子體系初探
- 基於短週期價量特徵的多因子選股體系
- 深度學習演算法掘金ALPHA因子
- 人工智慧選股框架及其經典演算法簡介
7、附錄
原文連結:《【重磅】AI Alphas(A股版) 》
本文由BigQuant人工智慧量化投資平臺原創推出,版權歸BigQuant所有,轉載請註明出處。