p. 42
定理6(複合函式的極限運演算法則) 設函式\(y=f[g(x)]\)是由函式\(u=g(x)\)與函式\(y=f(u)\)複合而成,\(f[g(x)]\)在點\(x_0\)的某去心鄰域內有定義,若\(\lim_{x\to x_0}g(x)=u_0\),\(\lim_{u\to u_0}f(u)=A\),且存在\(\delta_0>0\),當\(x\in\mathring U(x_0,\delta_0)\)時,有\(g(x)\ne u_0\),則
\[\lim_{x\to x_0}f[g(x)]=\lim_{u\to u_0}f(u)=A。
\]
p. 60
定理3 設函式\(y=f[g(x)]\)由函式\(u=g(x)\)與函式\(y=f(u)\)複合而成,\(\mathring U(x_0)\subset D_{f\circ g}\)。若\(\lim_{x\to x_0}g(x)=u_0\),而函式\(y=f(u)\)在\(u=u_0\)連續,則
\[\lim_{x\to x_0}f[g(x)]=\lim_{u\to u_0}f(u)=f(u_0)。\tag{9-1}
\]