pandas 學習(2): pandas 資料結構之DataFrame

Amei1314發表於2016-09-24

  DataFrame 型別類似於資料庫表結構的資料結構,其含有行索引和列索引,可以將DataFrame 想成是由相同索引的Series組成的Dict型別。在其底層是通過二維以及一維的資料塊實現。

1.  DataFrame 物件的構建

  1.1 用包含等長的列表或者是NumPy陣列的字典建立DataFrame物件

In [68]: import pandas as pd

In [69]: from pandas import Series,DataFrame

# 建立包含等長列表的字典型別 In [
70]: data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'],'year': [2000, 2001, 20 ...: 02, 2001, 2002],'pop': [1.5, 1.7, 3.6, 2.4, 2.9]} In [71]: data Out[71]: {'pop': [1.5, 1.7, 3.6, 2.4, 2.9], 'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'], 'year': [2000, 2001, 2002, 2001, 2002]} # 建立DataFrame物件 In [72]: frame1 = DataFrame(data) # 紅色部分為自動生成的索引 In [73]: frame1 Out[73]: pop state year 0 1.5 Ohio 2000 1 1.7 Ohio 2001 2 3.6 Ohio 2002 3 2.4 Nevada 2001 4 2.9 Nevada 2002

  在建立過程中可以指點列的順序:

In [74]: frame1 = DataFrame(data,columns=['year', 'state', 'pop'])

In [75]: frame1
Out[75]: 
   year   state  pop
0  2000    Ohio  1.5
1  2001    Ohio  1.7
2  2002    Ohio  3.6
3  2001  Nevada  2.4
4  2002  Nevada  2.9

  和Series一樣,DataFrame也是可以指定索引內容:

In [76]: ind = ['one', 'two', 'three', 'four', 'five']
In [77]: frame1 = DataFrame(data,index = ind)

In [78]: frame1
Out[78]: 
       pop   state  year
one    1.5    Ohio  2000
two    1.7    Ohio  2001
three  3.6    Ohio  2002
four   2.4  Nevada  2001
five   2.9  Nevada  2002

  1.2.  用由字典型別組成的巢狀字典型別來生成DataFrame物件

  當由巢狀的字典型別生成DataFrame的時候,外部的字典索引會成為列名,內部的字典索引會成為行名。生成的DataFrame會根據行索引排序

In [84]: pop = {'Nevada': {2001: 2.4, 2002: 2.9},'Ohio': {2000: 1.5, 2001: 1.7, 2002: 3.6}}

In [85]: frame3 = DataFrame(pop)

In [86]: frame3
Out[86]: 
      Nevada  Ohio
2000     NaN   1.5
2001     2.4   1.7
2002     2.9   3.6

  除了使用預設的按照行索引排序之外,還可以指定行序列:

In [95]: frame3 = DataFrame(pop,[2002,2001,2000])

In [96]: frame3
Out[96]: 
      Nevada  Ohio
2002     2.9   3.6
2001     2.4   1.7
2000     NaN   1.5

  1.3 其它構造方法:

  

2.  DataFrame 內容訪問

  從DataFrame中獲取一列的結果為一個Series,可以通過以下兩種方式獲取:

# 以字典索引方式獲取
In [100]: frame1["state"] Out[100]: one Ohio two Ohio three Ohio four Nevada five Nevada Name: state, dtype: object # 以屬性方式獲取 In [101]: frame1.state Out[101]: one Ohio two Ohio three Ohio four Nevada five Nevada Name: state, dtype: object

  也可以通過ix獲取一行資料:

In [109]: frame1.ix["one"] # 或者是 frame1.ix[0]
Out[109]: 
pop       1.5
state    Ohio
year     2000
Name: one, dtype: object
# 獲取多行資料
In [110]: frame1.ix[["tow","three","four"]]
Out[110]:
       pop   state    year
tow    NaN     NaN     NaN
three  3.6    Ohio  2002.0
four   2.4  Nevada  2001.0
# 還可以通過預設數字行索引來獲取資料
In [111]: frame1.ix[range(3)]
Out[111]:
       pop state  year
one    1.5  Ohio  2000
two    1.7  Ohio  2001
three  3.6  Ohio  2002

  獲取指定行,指定列的交匯值:

In [119]: frame1["state"]
Out[119]: 
one        Ohio
two        Ohio
three      Ohio
four     Nevada
five     Nevada
Name: state, dtype: object

In [120]: frame1["state"][0]
Out[120]: 'Ohio'

In [121]: frame1["state"]["one"]
Out[121]: 'Ohio'

  先指定列再指定行:

In [125]: frame1.ix[0]
Out[125]: 
pop       1.5
state    Ohio
year     2000
Name: one, dtype: object

In [126]: frame1.ix[0]["state"]
Out[126]: 'Ohio'

In [127]: frame1.ix["one"]["state"]
Out[127]: 'Ohio'

In [128]: frame1.ix["one"][0]
Out[128]: 1.5

In [129]: frame1.ix[0][0]
Out[129]: 1.5

 

3. DataFrame 物件的修改

  增加一列,並所有賦值為同一個值:

# 增加一列值
In [131]: frame1["debt"] = 10 In [132]: frame1 Out[132]: pop state year debt one 1.5 Ohio 2000 10 two 1.7 Ohio 2001 10 three 3.6 Ohio 2002 10 four 2.4 Nevada 2001 10 five 2.9 Nevada 2002 10
# 更改一列的值 In [
133]: frame1["debt"] = np.arange(5) In [134]: frame1 Out[134]: pop state year debt one 1.5 Ohio 2000 0 two 1.7 Ohio 2001 1 three 3.6 Ohio 2002 2 four 2.4 Nevada 2001 3 five 2.9 Nevada 2002 4

  追加型別為Series的一列

# 判斷是否為東部區
In [137]: east = (frame1.state == "Ohio") In [138]: east Out[138]: one True two True three True four False five False Name: state, dtype: bool # 賦Series值 In [139]: frame1["east"] = east In [140]: frame1 Out[140]: pop state year debt east one 1.5 Ohio 2000 0 True two 1.7 Ohio 2001 1 True three 3.6 Ohio 2002 2 True four 2.4 Nevada 2001 3 False five 2.9 Nevada 2002 4 False

  DataFrame 的行可以命名,同時多列也可以命名:

In [145]: frame3.columns.name = "state"

In [146]: frame3.index.name = "year"

In [147]: frame3
Out[147]: 
state  Nevada  Ohio
year               
2002      2.9   3.6
2001      2.4   1.7
2000      NaN   1.5

 

相關文章