機器學習之決策樹

NAVYSUMMER發表於2024-06-09
import math
import pickle

from matplotlib import pyplot as plt


def calc_shang(dataset: list):
    """
    計算給定資料集的夏農熵
    :param dataset:
    :return:
    """
    length = len(dataset)
    label_count_map = {}
    for item in dataset:
        current_label = item[-1]
        if current_label not in label_count_map:
            label_count_map[current_label] = 0
        label_count_map[current_label] += 1
    shang = 0.0
    for label, count in label_count_map.items():
        prob = count / length
        shang += prob * (-1 * math.log(prob, 2))
    return shang


def create_dataset():
    dataset = [
        [1, 1, "yes"],
        [1, 1, "yes"],
        [1, 0, "no"],
        [0, 1, "no"],
        [0, 1, "no"]
    ]
    labels = ["no surfacing", "flippers"]
    return dataset, labels


def split_dataset(dataset, axis, value):
    new_dataset = []
    for item in dataset:
        if item[axis] == value:
            reduced_item = item[:axis]
            reduced_item.extend(item[axis + 1:])
            new_dataset.append(reduced_item)
    return new_dataset


def choose_best_feature(dataset):
    num = len(dataset[0]) - 1
    shang = calc_shang(dataset)
    best_info_gain = 0
    best_feature = -1
    for i in range(num):
        feat_list = [_[i] for _ in dataset]
        unique_list = set(feat_list)
        _shang = 0
        for feat in unique_list:
            sub_dataset = split_dataset(dataset, i, feat)
            prob = len(sub_dataset) / len(dataset)
            _shang += prob * calc_shang(sub_dataset)
        info_gain = shang - _shang
        if info_gain > best_info_gain:
            best_info_gain = info_gain
            best_feature = i
    return best_feature


def classify(class_list):
    class_count_map = {}
    for item in class_list:
        if item not in class_count_map:
            class_count_map[item] = 0
        class_count_map[item] += 1
    sorted_class_count_map = sorted(class_count_map.items(), key=lambda x: x[1], reverse=True)
    return sorted_class_count_map[0][0]


def create_tree(dataset, labels):
    class_list = [_[-1] for _ in dataset]
    if class_list.count(class_list[0]) == len(class_list):
        return class_list[0]
    best_feature = choose_best_feature(dataset)
    best_class_label = labels[best_feature]
    tree = {best_class_label: {}}
    del labels[best_feature]
    feat_values = [_[best_feature] for _ in dataset]
    unique_values = set(feat_values)
    for value in unique_values:
        sub_labels = labels[:]
        tree[best_class_label][value] = create_tree(split_dataset(dataset, best_feature, value), sub_labels)
    return tree


def plot_tree(tree, root_name):
    def _plot_tree(ax, tree, parent_name, parent_x, parent_y, dx, dy):
        if parent_name and parent_x == 0 and parent_y == 0:
            ax.text(0, 0, parent_name, ha='center', va='center', bbox=dict(facecolor='white', edgecolor='black'))
        if isinstance(tree, dict):
            # 遍歷字典中的每個鍵值對
            for edge_label, child in tree.items():
                # 計運算元節點的位置
                child_x = parent_x - dx / 2 if edge_label == 0 else parent_x + dx / 2
                child_y = parent_y - dy

                if isinstance(child, dict):
                    child_name = list(child.keys())[0]
                else:
                    child_name = child

                # 繪製邊和邊的描述
                ax.plot([parent_x, child_x], [parent_y, child_y], 'k-')
                mid_x = (parent_x + child_x) / 2
                mid_y = (parent_y + child_y) / 2
                ax.text(mid_x, mid_y, str(edge_label), ha='center', va='center', fontsize=8,
                        bbox=dict(facecolor='yellow', edgecolor='black'))

                # 繪製子節點
                ax.text(child_x, child_y, child_name, ha='center', va='center',
                        bbox=dict(facecolor='white', edgecolor='black'))

                # 遞迴繪製子樹
                if isinstance(child, dict):
                    _plot_tree(ax, child[child_name], child_name, child_x, child_y, dx / 2, dy)

    fig, ax = plt.subplots(figsize=(10, 8))
    ax.set_xlim(-1, 1)
    ax.set_ylim(-1.5, 0.5)
    ax.axis('off')

    _plot_tree(ax, tree[root_name], root_name, 0, 0, 1, 0.5)

    plt.show()


def classify_tree(tree: dict, labels: list, test_vec):
    first_str = list(tree.keys())[0]
    second_dict = tree[first_str]
    feat_index = labels.index(first_str)
    class_label = ""
    for key, value in second_dict.items():
        if test_vec[feat_index] == key:
            if isinstance(value, dict):
                class_label = classify_tree(value, labels, test_vec)
            else:
                class_label = value
    return class_label


def store_tree(tree: dict, file_path: str):
    with open(file_path, "wb") as f:
        pickle.dump(tree, f)


def grab_tree(file_path):
    with open(file_path, "rb") as f:
        return pickle.load(f)


if __name__ == '__main__':
    mat, labels = create_dataset()
    tree = create_tree(dataset=mat, labels=labels)
    plot_tree(tree, 'no surfacing')

其他決策樹示例或者基於主流機器學習框架實現的決策樹程式碼地址:

https://gitee.com/navysummer/machine-learning/tree/master/decision_tree

  

相關文章