[譯] TensorFlow 教程 #06 - CIFAR-10

活魚眼發表於2017-08-07

題圖來自:github
本文主要演示了在CIFAR-10資料集上進行影象識別
其中有大段之前教程的文字及程式碼,如果看過的朋友可以快速翻閱。

01 - 簡單線性模型 | 02 - 卷積神經網路 | 03 - PrettyTensor | 04 - 儲存& 恢復
05 - 整合學習

by Magnus Erik Hvass Pedersen / GitHub / Videos on YouTube
中文翻譯 thrillerist / Github

簡介

這篇教程介紹瞭如何建立一個在CIRAR-10資料集上進行影象分類的卷積神經網路。同時也說明了在訓練和測試時如何使用不同的網路。

本文基於上一篇教程,你需要了解基本的TensorFlow和附加包Pretty Tensor。其中大量程式碼和文字與之前教程相似,如果你已經看過可以快速地瀏覽本文。

流程圖

下面的圖表直接顯示了之後實現的卷積神經網路中資料的傳遞。首先有一個扭曲(distorts)輸入影象的預處理層,用來人為地擴大訓練集。接著有兩個卷積層,兩個全連線層和一個softmax分類層。在後面會有更大的圖示來顯示權重和卷積層的輸出,教程 #02 有卷積如何工作的更多細節。

在這種情況下影象是誤分類的。影象上有一隻狗,但神經網路不確定它是狗還是貓,認為更有可能是貓。

from IPython.display import Image
Image('images/06_network_flowchart.png')複製程式碼

匯入

%matplotlib inline
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
from sklearn.metrics import confusion_matrix
import time
from datetime import timedelta
import math
import os

# Use PrettyTensor to simplify Neural Network construction.
import prettytensor as pt複製程式碼

使用Python3.5.2(Anaconda)開發,TensorFlow版本是:

tf.__version__複製程式碼

'0.12.0-rc0'

PrettyTensor 版本:

pt.__version__複製程式碼

'0.7.1'

載入資料

import cifar10複製程式碼

設定電腦上儲存資料集的路徑。

# cifar10.data_path = "data/CIFAR-10/"複製程式碼

CIFAR-10資料集大概有163MB,如果給定路徑沒有找到檔案的話,將會自動下載。

cifar10.maybe_download_and_extract()複製程式碼

Data has apparently already been downloaded and unpacked.

載入分類名稱。

class_names = cifar10.load_class_names()
class_names複製程式碼

Loading data: data/CIFAR-10/cifar-10-batches-py/batches.meta
['airplane',
'automobile',
'bird',
'cat',
'deer',
'dog',
'frog',
'horse',
'ship',
'truck']

載入訓練集。這個函式返回影象、整形分類號碼、以及用One-Hot編碼的分類號陣列,稱為標籤。

images_train, cls_train, labels_train = cifar10.load_training_data()複製程式碼

Loading data: data/CIFAR-10/cifar-10-batches-py/data_batch_1
Loading data: data/CIFAR-10/cifar-10-batches-py/data_batch_2
Loading data: data/CIFAR-10/cifar-10-batches-py/data_batch_3
Loading data: data/CIFAR-10/cifar-10-batches-py/data_batch_4
Loading data: data/CIFAR-10/cifar-10-batches-py/data_batch_5

載入測試集。

images_test, cls_test, labels_test = cifar10.load_test_data()複製程式碼

Loading data: data/CIFAR-10/cifar-10-batches-py/test_batch

現在已經載入了CIFAR-10資料集,它包含60,000張影象以及相關的標籤(影象的分類)。資料集被分為兩個獨立的子集,即訓練集和測試集。

print("Size of:")
print("- Training-set:\t\t{}".format(len(images_train)))
print("- Test-set:\t\t{}".format(len(images_test)))複製程式碼

Size of:

  • Training-set: 50000
  • Test-set: 10000

資料維度

下面的程式碼中多次用到資料維度。cirfa10模組中已經定義好了這些,因此我們只需要import進來。

from cifar10 import img_size, num_channels, num_classes複製程式碼

影象是32 x 32畫素的,但我們將影象裁剪至24 x 24畫素。

img_size_cropped = 24複製程式碼

用來繪製圖片的幫助函式

這個函式用來在3x3的柵格中畫9張影象,然後在每張影象下面寫出真實類別和預測類別。

def plot_images(images, cls_true, cls_pred=None, smooth=True):

    assert len(images) == len(cls_true) == 9

    # Create figure with sub-plots.
    fig, axes = plt.subplots(3, 3)

    # Adjust vertical spacing if we need to print ensemble and best-net.
    if cls_pred is None:
        hspace = 0.3
    else:
        hspace = 0.6
    fig.subplots_adjust(hspace=hspace, wspace=0.3)

    for i, ax in enumerate(axes.flat):
        # Interpolation type.
        if smooth:
            interpolation = 'spline16'
        else:
            interpolation = 'nearest'

        # Plot image.
        ax.imshow(images[i, :, :, :],
                  interpolation=interpolation)

        # Name of the true class.
        cls_true_name = class_names[cls_true[i]]

        # Show true and predicted classes.
        if cls_pred is None:
            xlabel = "True: {0}".format(cls_true_name)
        else:
            # Name of the predicted class.
            cls_pred_name = class_names[cls_pred[i]]

            xlabel = "True: {0}\nPred: {1}".format(cls_true_name, cls_pred_name)

        # Show the classes as the label on the x-axis.
        ax.set_xlabel(xlabel)

        # Remove ticks from the plot.
        ax.set_xticks([])
        ax.set_yticks([])

    # Ensure the plot is shown correctly with multiple plots
    # in a single Notebook cell.
    plt.show()複製程式碼

繪製幾張影象來看看資料是否正確

# Get the first images from the test-set.
images = images_test[0:9]

# Get the true classes for those images.
cls_true = cls_test[0:9]

# Plot the images and labels using our helper-function above.
plot_images(images=images, cls_true=cls_true, smooth=False)複製程式碼

上面畫素化的影象是神經網路的輸入。如果我們對影象進行平滑處理,可能更易於人眼識別。

plot_images(images=images, cls_true=cls_true, smooth=True)複製程式碼

TensorFlow圖

TensorFlow的全部目的就是使用一個稱之為計算圖(computational graph)的東西,它會比直接在Python中進行相同計算量要高效得多。TensorFlow比Numpy更高效,因為TensorFlow瞭解整個需要執行的計算圖,然而Numpy只知道某個時間點上唯一的數學運算。

TensorFlow也能夠自動地計算需要優化的變數的梯度,使得模型有更好的表現。這是由於圖是簡單數學表示式的結合,因此整個圖的梯度可以用鏈式法則推匯出來。

TensorFlow還能利用多核CPU和GPU,Google也為TensorFlow製造了稱為TPUs(Tensor Processing Units)的特殊晶片,它比GPU更快。

一個TensorFlow圖由下面幾個部分組成,後面會詳細描述:

  • 佔位符變數(Placeholder)用來改變圖的輸入。
  • 模型變數(Model)將會被優化,使得模型表現得更好。
  • 模型本質上就是一些數學函式,它根據Placeholder和模型的輸入變數來計算一些輸出。
  • 一個cost度量用來指導變數的優化。
  • 一個優化策略會更新模型的變數。

另外,TensorFlow圖也包含了一些除錯狀態,比如用TensorBoard列印log資料,本教程不涉及這些。

佔位符 (Placeholder)變數

Placeholder是作為圖的輸入,我們每次執行圖的時候都可能改變它們。將這個過程稱為feeding placeholder變數,後面將會描述這個。

首先我們為輸入影象定義placeholder變數。這讓我們可以改變輸入到TensorFlow圖中的影象。這也是一個張量(tensor),代表一個多維向量或矩陣。資料型別設定為float32,形狀設為[None, img_size, img_size, num_channels]代表tensor可能儲存著任意數量的影象,每張影象寬高都為img_size,有num_channels個顏色通道。

x = tf.placeholder(tf.float32, shape=[None, img_size, img_size, num_channels], name='x')複製程式碼

接下來我們為輸入變數x中的影象所對應的真實標籤定義placeholder變數。變數的形狀是[None, num_classes],這代表著它儲存了任意數量的標籤,每個標籤是長度為num_classes的向量,本例中長度為10。

y_true = tf.placeholder(tf.float32, shape=[None, num_classes], name='y_true')複製程式碼

我們也可以為class-number提供一個placeholder,但這裡用argmax來計算它。這裡只是TensorFlow中的一些操作,沒有執行什麼運算。

y_true_cls = tf.argmax(y_true, dimension=1)複製程式碼

預處理的幫助函式

下面的幫助函式建立了用來預處理輸入影象的TensorFlow計算圖。這裡並未執行計算,函式只是給TensorFlow計算圖新增了節點。

神經網路在訓練和測試階段的預處理方法不同:

  • 對於訓練來說,輸入影象是隨機裁剪、水平翻轉的,並且用隨機值來調整色調、對比度和飽和度。這樣就建立了原始輸入影象的隨機變體,人為地擴充了訓練集。後面會顯示一些扭曲過的影象樣本。

  • 對於測試,輸入影象根據中心裁剪,其他不作調整。

def pre_process_image(image, training):
    # This function takes a single image as input,
    # and a boolean whether to build the training or testing graph.

    if training:
        # For training, add the following to the TensorFlow graph.

        # Randomly crop the input image.
        image = tf.random_crop(image, size=[img_size_cropped, img_size_cropped, num_channels])

        # Randomly flip the image horizontally.
        image = tf.image.random_flip_left_right(image)

        # Randomly adjust hue, contrast and saturation.
        image = tf.image.random_hue(image, max_delta=0.05)
        image = tf.image.random_contrast(image, lower=0.3, upper=1.0)
        image = tf.image.random_brightness(image, max_delta=0.2)
        image = tf.image.random_saturation(image, lower=0.0, upper=2.0)

        # Some of these functions may overflow and result in pixel
        # values beyond the [0, 1] range. It is unclear from the
        # documentation of TensorFlow 0.10.0rc0 whether this is
        # intended. A simple solution is to limit the range.

        # Limit the image pixels between [0, 1] in case of overflow.
        image = tf.minimum(image, 1.0)
        image = tf.maximum(image, 0.0)
    else:
        # For training, add the following to the TensorFlow graph.

        # Crop the input image around the centre so it is the same
        # size as images that are randomly cropped during training.
        image = tf.image.resize_image_with_crop_or_pad(image,
                                                       target_height=img_size_cropped,
                                                       target_width=img_size_cropped)

    return image複製程式碼

下面函式中,輸入batch中每張影象都呼叫以上函式。

def pre_process(images, training):
    # Use TensorFlow to loop over all the input images and call
    # the function above which takes a single image as input.
    images = tf.map_fn(lambda image: pre_process_image(image, training), images)

    return images複製程式碼

為了繪製扭曲過的影象,我們為TensorFlow建立預處理graph,後面將會執行它。

distorted_images = pre_process(images=x, training=True)複製程式碼

建立主要處理程式的幫助函式

下面的幫助函式建立了卷積神經網路的主要部分。這裡使用之前教程描述過的Pretty Tensor。

def main_network(images, training):
    # Wrap the input images as a Pretty Tensor object.
    x_pretty = pt.wrap(images)

    # Pretty Tensor uses special numbers to distinguish between
    # the training and testing phases.
    if training:
        phase = pt.Phase.train
    else:
        phase = pt.Phase.infer

    # Create the convolutional neural network using Pretty Tensor.
    # It is very similar to the previous tutorials, except
    # the use of so-called batch-normalization in the first layer.
    with pt.defaults_scope(activation_fn=tf.nn.relu, phase=phase):
        y_pred, loss = x_pretty.\
            conv2d(kernel=5, depth=64, name='layer_conv1', batch_normalize=True).\
            max_pool(kernel=2, stride=2).\
            conv2d(kernel=5, depth=64, name='layer_conv2').\
            max_pool(kernel=2, stride=2).\
            flatten().\
            fully_connected(size=256, name='layer_fc1').\
            fully_connected(size=128, name='layer_fc2').\
            softmax_classifier(num_classes=num_classes, labels=y_true)

    return y_pred, loss複製程式碼

建立神經網路的幫助函式

下面的幫助函式建立了整個神經網路,包含上面定義的預處理以及主要處理模組。

注意,神經網路被編碼到'network'變數作用域中。因為我們實際上在TensorFlow圖中建立了兩個神經網路。像這樣指定一個變數作用域,可以在兩個神經網路中複用變數,因此訓練網路優化過的變數可以在測試網路中複用。

def create_network(training):
    # Wrap the neural network in the scope named 'network'.
    # Create new variables during training, and re-use during testing.
    with tf.variable_scope('network', reuse=not training):
        # Just rename the input placeholder variable for convenience.
        images = x

        # Create TensorFlow graph for pre-processing.
        images = pre_process(images=images, training=training)

        # Create TensorFlow graph for the main processing.
        y_pred, loss = main_network(images=images, training=training)

    return y_pred, loss複製程式碼

為訓練階段建立神經網路

首先建立一個儲存當前優化迭代次數的TensorFlow變數。在之前的教程中,是使用一個Python變數,但本教程中,我們想用checkpoints中的其他TensorFlow變數來儲存。

trainable=False表示TensorFlow不會優化此變數。

global_step = tf.Variable(initial_value=0,
                          name='global_step', trainable=False)複製程式碼

建立訓練用的神經網路。函式 create_network()返回y_predloss,但在訓練時我們只需用到loss函式。

_, loss = create_network(training=True)複製程式碼

建立最小化loss函式的優化器。同時將global_step傳給優化器,這樣每次迭代它都減一。

optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(loss, global_step=global_step)複製程式碼

建立測試階段的神經網路

現在建立測試階段的神經網路。 同樣的,create_network() 返回輸入影象的預測標籤 y_pred,優化過程也用到 loss函式。測試時我們只需要y_pred

y_pred, _ = create_network(training=False)複製程式碼

然後我們計算預測類別號的整形數字。網路的輸出y_pred是一個10個元素的陣列。類別號是陣列中最大元素的索引。

y_pred_cls = tf.argmax(y_pred, dimension=1)複製程式碼

然後建立一個布林向量,用來告訴我們每張圖片的真實類別是否與預測類別相同。

correct_prediction = tf.equal(y_pred_cls, y_true_cls)複製程式碼

上面的計算先將布林值向量型別轉換成浮點型向量,這樣子False就變成0,True變成1,然後計算這些值的平均數,以此來計算分類的準確率。

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))複製程式碼

Saver

為了儲存神經網路的變數(這樣不必再次訓練網路就能過載),我們建立一個稱為Saver-object的物件,它用來儲存及恢復TensorFlow圖的所有變數。在這裡並未儲存什麼東西,(儲存操作)在後面的optimize()函式中完成。

saver = tf.train.Saver()複製程式碼

獲取權重

下面,我們要繪製神經網路的權重。當使用Pretty Tensor來建立網路時,層的所有變數都是由Pretty Tensoe間接建立的。因此我們要從TensorFlow中獲取變數。

我們用layer_conv1layer_conv2代表兩個卷積層。這也叫變數作用域(不要與上面描述的defaults_scope混淆了)。PrettyTensor會自動給它為每個層建立的變數命名,因此我們可以通過層的作用域名稱和變數名來取得某一層的權重。

函式實現有點笨拙,因為我們不得不用TensorFlow函式get_variable(),它是設計給其他用途的,建立新的變數或重用現有變數。建立下面的幫助函式很簡單。

def get_weights_variable(layer_name):
    # Retrieve an existing variable named 'weights' in the scope
    # with the given layer_name.
    # This is awkward because the TensorFlow function was
    # really intended for another purpose.

    with tf.variable_scope("network/" + layer_name, reuse=True):
        variable = tf.get_variable('weights')

    return variable複製程式碼

藉助這個幫助函式我們可以獲取變數。這些是TensorFlow的objects。你需要類似的操作來獲取變數的內容: contents = session.run(weights_conv1) ,下面會提到這個。

weights_conv1 = get_weights_variable(layer_name='layer_conv1')
weights_conv2 = get_weights_variable(layer_name='layer_conv2')複製程式碼

獲取layer的輸出

同樣的,我們還需要獲取卷積層的輸出。這個函式與上面獲取權重的函式有所不同。這裡我們找回卷積層輸出的最後一個張量。

def get_layer_output(layer_name):
    # The name of the last operation of the convolutional layer.
    # This assumes you are using Relu as the activation-function.
    tensor_name = "network/" + layer_name + "/Relu:0"

    # Get the tensor with this name.
    tensor = tf.get_default_graph().get_tensor_by_name(tensor_name)

    return tensor複製程式碼

取得卷積層的輸出以便之後繪製。

output_conv1 = get_layer_output(layer_name='layer_conv1')
output_conv2 = get_layer_output(layer_name='layer_conv2')複製程式碼

執行TensorFlow

建立TensorFlow會話(session)

一旦建立了TensorFlow圖,我們需要建立一個TensorFlow會話,用來執行圖。

session = tf.Session()複製程式碼

初始化或恢復變數

訓練神經網路會花上很長時間,特別是當你沒有GPU的時候。因此我們在訓練時儲存checkpoints,這樣就能在其他時間繼續訓練(比如晚上),以後也可以不用訓練神經網路就用這些來分析結果。

如果你想重新訓練神經網路,就需要先刪掉這些checkpoints。

這是用來儲存checkpoints的資料夾。

save_dir = 'checkpoints/'複製程式碼

如果資料夾不存在則建立。

if not os.path.exists(save_dir):
    os.makedirs(save_dir)複製程式碼

這是checkpoints的基本檔名,TensorFlow會在後面新增迭代次數等。

save_path = os.path.join(save_dir, 'cifar10_cnn')複製程式碼

試著載入最新的checkpoint。如果checkpoint不存在或改變了TensorFlow圖的話,可能會失敗並丟擲異常。

try:
    print("Trying to restore last checkpoint ...")

    # Use TensorFlow to find the latest checkpoint - if any.
    last_chk_path = tf.train.latest_checkpoint(checkpoint_dir=save_dir)

    # Try and load the data in the checkpoint.
    saver.restore(session, save_path=last_chk_path)

    # If we get to this point, the checkpoint was successfully loaded.
    print("Restored checkpoint from:", last_chk_path)
except:
    # If the above failed for some reason, simply
    # initialize all the variables for the TensorFlow graph.
    print("Failed to restore checkpoint. Initializing variables instead.")
    session.run(tf.global_variables_initializer())複製程式碼
Trying to restore last checkpoint ...
Restored checkpoint from: checkpoints/cifar10_cnn-150000複製程式碼

建立隨機訓練batch的幫助函式

在訓練集中有50,000張圖。用這些影象計算模型的梯度會花很多時間。因此,在優化器的每次迭代裡只用到了一小部分的影象。

如果記憶體耗盡導致電腦當機或變得很慢,你應該試著減少這些數量,但同時可能還需要更優化的迭代。

train_batch_size = 64複製程式碼

函式從訓練集中挑選一個隨機的training-batch。

def random_batch():
    # Number of images in the training-set.
    num_images = len(images_train)

    # Create a random index.
    idx = np.random.choice(num_images,
                           size=train_batch_size,
                           replace=False)

    # Use the random index to select random images and labels.
    x_batch = images_train[idx, :, :, :]
    y_batch = labels_train[idx, :]

    return x_batch, y_batch複製程式碼

執行優化迭代的幫助函式

函式用來執行一定數量的優化迭代,以此來逐漸改善網路層的變數。在每次迭代中,會從訓練集中選擇新的一批資料,然後TensorFlow在這些訓練樣本上執行優化。每100次迭代會列印出進度。每1000次迭代後會儲存一個checkpoint,最後一次迭代完畢也會儲存。

def optimize(num_iterations):
    # Start-time used for printing time-usage below.
    start_time = time.time()

    for i in range(num_iterations):
        # Get a batch of training examples.
        # x_batch now holds a batch of images and
        # y_true_batch are the true labels for those images.
        x_batch, y_true_batch = random_batch()

        # Put the batch into a dict with the proper names
        # for placeholder variables in the TensorFlow graph.
        feed_dict_train = {x: x_batch,
                           y_true: y_true_batch}

        # Run the optimizer using this batch of training data.
        # TensorFlow assigns the variables in feed_dict_train
        # to the placeholder variables and then runs the optimizer.
        # We also want to retrieve the global_step counter.
        i_global, _ = session.run([global_step, optimizer],
                                  feed_dict=feed_dict_train)

        # Print status to screen every 100 iterations (and last).
        if (i_global % 100 == 0) or (i == num_iterations - 1):
            # Calculate the accuracy on the training-batch.
            batch_acc = session.run(accuracy,
                                    feed_dict=feed_dict_train)

            # Print status.
            msg = "Global Step: {0:>6}, Training Batch Accuracy: {1:>6.1%}"
            print(msg.format(i_global, batch_acc))

        # Save a checkpoint to disk every 1000 iterations (and last).
        if (i_global % 1000 == 0) or (i == num_iterations - 1):
            # Save all variables of the TensorFlow graph to a
            # checkpoint. Append the global_step counter
            # to the filename so we save the last several checkpoints.
            saver.save(session,
                       save_path=save_path,
                       global_step=global_step)

            print("Saved checkpoint.")

    # Ending time.
    end_time = time.time()

    # Difference between start and end-times.
    time_dif = end_time - start_time

    # Print the time-usage.
    print("Time usage: " + str(timedelta(seconds=int(round(time_dif)))))複製程式碼

用來繪製錯誤樣本的幫助函式

函式用來繪製測試集中被誤分類的樣本。

def plot_example_errors(cls_pred, correct):
    # This function is called from print_test_accuracy() below.

    # cls_pred is an array of the predicted class-number for
    # all images in the test-set.

    # correct is a boolean array whether the predicted class
    # is equal to the true class for each image in the test-set.

    # Negate the boolean array.
    incorrect = (correct == False)

    # Get the images from the test-set that have been
    # incorrectly classified.
    images = images_test[incorrect]

    # Get the predicted classes for those images.
    cls_pred = cls_pred[incorrect]

    # Get the true classes for those images.
    cls_true = cls_test[incorrect]

    # Plot the first 9 images.
    plot_images(images=images[0:9],
                cls_true=cls_true[0:9],
                cls_pred=cls_pred[0:9])複製程式碼

繪製混淆(confusion)矩陣的幫助函式

def plot_confusion_matrix(cls_pred):
    # This is called from print_test_accuracy() below.

    # cls_pred is an array of the predicted class-number for
    # all images in the test-set.

    # Get the confusion matrix using sklearn.
    cm = confusion_matrix(y_true=cls_test,  # True class for test-set.
                          y_pred=cls_pred)  # Predicted class.

    # Print the confusion matrix as text.
    for i in range(num_classes):
        # Append the class-name to each line.
        class_name = "({}) {}".format(i, class_names[i])
        print(cm[i, :], class_name)

    # Print the class-numbers for easy reference.
    class_numbers = [" ({0})".format(i) for i in range(num_classes)]
    print("".join(class_numbers))複製程式碼

計算分類的幫助函式

這個函式用來計算影象的預測類別,同時返回一個代表每張影象分類是否正確的布林陣列。

由於計算可能會耗費太多記憶體,就分批處理。如果你的電腦當機了,試著降低batch-size。

# Split the data-set in batches of this size to limit RAM usage.
batch_size = 256

def predict_cls(images, labels, cls_true):
    # Number of images.
    num_images = len(images)

    # Allocate an array for the predicted classes which
    # will be calculated in batches and filled into this array.
    cls_pred = np.zeros(shape=num_images, dtype=np.int)

    # Now calculate the predicted classes for the batches.
    # We will just iterate through all the batches.
    # There might be a more clever and Pythonic way of doing this.

    # The starting index for the next batch is denoted i.
    i = 0

    while i < num_images:
        # The ending index for the next batch is denoted j.
        j = min(i + batch_size, num_images)

        # Create a feed-dict with the images and labels
        # between index i and j.
        feed_dict = {x: images[i:j, :],
                     y_true: labels[i:j, :]}

        # Calculate the predicted class using TensorFlow.
        cls_pred[i:j] = session.run(y_pred_cls, feed_dict=feed_dict)

        # Set the start-index for the next batch to the
        # end-index of the current batch.
        i = j

    # Create a boolean array whether each image is correctly classified.
    correct = (cls_true == cls_pred)

    return correct, cls_pred複製程式碼

計算測試集的預測類別。

def predict_cls_test():
    return predict_cls(images = images_test,
                       labels = labels_test,
                       cls_true = cls_test)複製程式碼

計算分類準確率的幫助函式

這個函式計算了給定布林陣列的分類準確率,布林陣列表示每張影象是否被正確分類。比如, cls_accuracy([True, True, False, False, False]) = 2/5 = 0.4。這個函式也返回了正確分類的數量。

def classification_accuracy(correct):
    # When averaging a boolean array, False means 0 and True means 1.
    # So we are calculating: number of True / len(correct) which is
    # the same as the classification accuracy.

    # Return the classification accuracy
    # and the number of correct classifications.
    return correct.mean(), correct.sum()複製程式碼

展示效能的幫助函式

函式用來列印測試集上的分類準確率。

為測試集上的所有圖片計算分類會花費一段時間,因此我們直接從這個函式裡呼叫上面的函式,這樣就不用每個函式都重新計算分類。

def print_test_accuracy(show_example_errors=False,
                        show_confusion_matrix=False):

    # For all the images in the test-set,
    # calculate the predicted classes and whether they are correct.
    correct, cls_pred = predict_cls_test()

    # Classification accuracy and the number of correct classifications.
    acc, num_correct = classification_accuracy(correct)

    # Number of images being classified.
    num_images = len(correct)

    # Print the accuracy.
    msg = "Accuracy on Test-Set: {0:.1%} ({1} / {2})"
    print(msg.format(acc, num_correct, num_images))

    # Plot some examples of mis-classifications, if desired.
    if show_example_errors:
        print("Example errors:")
        plot_example_errors(cls_pred=cls_pred, correct=correct)

    # Plot the confusion matrix, if desired.
    if show_confusion_matrix:
        print("Confusion Matrix:")
        plot_confusion_matrix(cls_pred=cls_pred)複製程式碼

繪製卷積權重的幫助函式

def plot_conv_weights(weights, input_channel=0):
    # Assume weights are TensorFlow ops for 4-dim variables
    # e.g. weights_conv1 or weights_conv2.

    # Retrieve the values of the weight-variables from TensorFlow.
    # A feed-dict is not necessary because nothing is calculated.
    w = session.run(weights)

    # Print statistics for the weights.
    print("Min:  {0:.5f}, Max:   {1:.5f}".format(w.min(), w.max()))
    print("Mean: {0:.5f}, Stdev: {1:.5f}".format(w.mean(), w.std()))

    # Get the lowest and highest values for the weights.
    # This is used to correct the colour intensity across
    # the images so they can be compared with each other.
    w_min = np.min(w)
    w_max = np.max(w)
    abs_max = max(abs(w_min), abs(w_max))

    # Number of filters used in the conv. layer.
    num_filters = w.shape[3]

    # Number of grids to plot.
    # Rounded-up, square-root of the number of filters.
    num_grids = math.ceil(math.sqrt(num_filters))

    # Create figure with a grid of sub-plots.
    fig, axes = plt.subplots(num_grids, num_grids)

    # Plot all the filter-weights.
    for i, ax in enumerate(axes.flat):
        # Only plot the valid filter-weights.
        if i<num_filters:
            # Get the weights for the i'th filter of the input channel.
            # The format of this 4-dim tensor is determined by the
            # TensorFlow API. See Tutorial #02 for more details.
            img = w[:, :, input_channel, i]

            # Plot image.
            ax.imshow(img, vmin=-abs_max, vmax=abs_max,
                      interpolation='nearest', cmap='seismic')

        # Remove ticks from the plot.
        ax.set_xticks([])
        ax.set_yticks([])

    # Ensure the plot is shown correctly with multiple plots
    # in a single Notebook cell.
    plt.show()複製程式碼

繪製卷積層輸出的幫助函式

def plot_layer_output(layer_output, image):
    # Assume layer_output is a 4-dim tensor
    # e.g. output_conv1 or output_conv2.

    # Create a feed-dict which holds the single input image.
    # Note that TensorFlow needs a list of images,
    # so we just create a list with this one image.
    feed_dict = {x: [image]}

    # Retrieve the output of the layer after inputting this image.
    values = session.run(layer_output, feed_dict=feed_dict)

    # Get the lowest and highest values.
    # This is used to correct the colour intensity across
    # the images so they can be compared with each other.
    values_min = np.min(values)
    values_max = np.max(values)

    # Number of image channels output by the conv. layer.
    num_images = values.shape[3]

    # Number of grid-cells to plot.
    # Rounded-up, square-root of the number of filters.
    num_grids = math.ceil(math.sqrt(num_images))

    # Create figure with a grid of sub-plots.
    fig, axes = plt.subplots(num_grids, num_grids)

    # Plot all the filter-weights.
    for i, ax in enumerate(axes.flat):
        # Only plot the valid image-channels.
        if i<num_images:
            # Get the images for the i'th output channel.
            img = values[0, :, :, i]

            # Plot image.
            ax.imshow(img, vmin=values_min, vmax=values_max,
                      interpolation='nearest', cmap='binary')

        # Remove ticks from the plot.
        ax.set_xticks([])
        ax.set_yticks([])

    # Ensure the plot is shown correctly with multiple plots
    # in a single Notebook cell.
    plt.show()複製程式碼

輸入影象變體的樣本

為了人為地增加訓練用的影象數量,神經網路預處理獲取輸入影象的隨機變體。這讓神經網路在識別和分類影象時更加靈活。

這是用來繪製輸入影象變體的幫助函式。

def plot_distorted_image(image, cls_true):
    # Repeat the input image 9 times.
    image_duplicates = np.repeat(image[np.newaxis, :, :, :], 9, axis=0)

    # Create a feed-dict for TensorFlow.
    feed_dict = {x: image_duplicates}

    # Calculate only the pre-processing of the TensorFlow graph
    # which distorts the images in the feed-dict.
    result = session.run(distorted_images, feed_dict=feed_dict)

    # Plot the images.
    plot_images(images=result, cls_true=np.repeat(cls_true, 9))複製程式碼

幫助函式獲取測試集影象以及它的分類號。

def get_test_image(i):
    return images_test[i, :, :, :], cls_test[i]複製程式碼

從測試集中取一張影象以及它的真實類別。

img, cls = get_test_image(16)複製程式碼

畫出影象的9張隨機變體。如果你重新執行程式碼,可能會得到不太一樣的結果。

plot_distorted_image(img, cls)複製程式碼

執行優化

我的膝上型電腦是4核的,每個2GHz。電腦帶有一個GPU,但對TensorFlow來說不太快,因此只用了CPU。在電腦上迭代10,000次大概花了1個小時。本教程中我執行了150,000次優化迭代,共花了15個小時。我讓它在夜裡以及白天的幾個時間段執行。

由於我們在優化過程中儲存了checkpoints,重新執行程式碼時會載入最後的那個checkpoint,所以可以先停止,等晚點再繼續執行優化。

if False:
    optimize(num_iterations=1000)複製程式碼

結果

在150,000次優化迭代之後,測試集上的分類準確率大約79%-80%。下面畫出了一些誤分類的影象。其中有一些即使人眼也很難分辨出來,也有一些是合乎情理的錯誤,比如大型車和卡車,貓與狗,但有些錯誤就有點奇怪了。

print_test_accuracy(show_example_errors=True,
                    show_confusion_matrix=True)複製程式碼

Accuracy on Test-Set: 79.3% (7932 / 10000)
Example errors:

Confusion Matrix:
[775 20 71 8 14 4 18 10 44 36] (0) airplane
[ 7 914 5 0 3 7 9 3 14 38] (1) automobile
[ 32 2 724 28 42 44 94 17 9 8] (2) bird
[ 18 7 48 508 56 209 99 29 7 19] (3) cat
[ 4 2 45 25 769 29 75 43 3 5] (4) deer
[ 8 6 34 89 35 748 38 32 1 9] (5) dog
[ 4 2 18 9 14 14 930 4 2 3] (6) frog
[ 6 2 23 18 31 55 17 833 0 15] (7) horse
[ 31 29 15 11 8 7 15 0 856 28] (8) ship
[ 13 67 4 5 0 4 7 7 18 875] (9) truck
(0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

卷積權重

下面展示了一些第一個卷積層的權重(或濾波)。共有3個輸入通道,因此有三組(資料),你可以改變input_channel來改變繪製結果。

權重正值是紅的,負值是藍的。

plot_conv_weights(weights=weights_conv1, input_channel=0)複製程式碼
Min:  -0.61643, Max:   0.63949
Mean: -0.00177, Stdev: 0.16469複製程式碼

下面展示了一些第二個卷積層的權重(或濾波)。它們比第一個卷積層的權重更接近零,你可以看到比較低的標準差。

plot_conv_weights(weights=weights_conv2, input_channel=1)複製程式碼
Min:  -0.73326, Max:   0.25344
Mean: -0.00394, Stdev: 0.05466複製程式碼

卷積層的輸出

繪製影象的幫助函式。

def plot_image(image):
    # Create figure with sub-plots.
    fig, axes = plt.subplots(1, 2)

    # References to the sub-plots.
    ax0 = axes.flat[0]
    ax1 = axes.flat[1]

    # Show raw and smoothened images in sub-plots.
    ax0.imshow(image, interpolation='nearest')
    ax1.imshow(image, interpolation='spline16')

    # Set labels.
    ax0.set_xlabel('Raw')
    ax1.set_xlabel('Smooth')

    # Ensure the plot is shown correctly with multiple plots
    # in a single Notebook cell.
    plt.show()複製程式碼

繪製一張測試集中的影象。未處理的畫素影象作為神經網路的輸入。

img, cls = get_test_image(16)
plot_image(img)複製程式碼

將原始影象作為神經網路的輸入,然後畫出第一個卷積層的輸出。

plot_layer_output(output_conv1, image=img)複製程式碼

將同樣的影象作為輸入,畫出第二個卷積層的輸出。

plot_layer_output(output_conv2, image=img)複製程式碼

預測的類別標籤

獲取影象的預測類別標籤和類別號。

label_pred, cls_pred = session.run([y_pred, y_pred_cls],
                                   feed_dict={x: [img]})複製程式碼

列印預測類別標籤。

# Set the rounding options for numpy.
np.set_printoptions(precision=3, suppress=True)

# Print the predicted label.
print(label_pred[0])複製程式碼

[ 0. 0. 0. 0.493 0. 0.49 0.006 0.01 0. 0. ]

預測類別標籤是長度為10的陣列,每個元素代表著神經網路有多大信心認為影象是該類別。

在這個例子中,索引3的值是0.493,5的值為0.490。這表示神經網路相信影象要麼是類別3,要麼是類別5,即貓或狗。

class_names[3]複製程式碼

'cat'

class_names[5]複製程式碼

'dog'

關閉TensorFlow會話

現在我們已經用TensorFlow完成了任務,關閉session,釋放資源。

# This has been commented out in case you want to modify and experiment
# with the Notebook without having to restart it.
# session.close()複製程式碼

結論

這篇教程介紹瞭如何建立一個在CIRAR-10資料集上進行影象分類的卷積神經網路。測試集上的分類準確率大概79-80%。

同時也畫出了卷積層的輸出,但很難看出神經網路如何分辨並分類影象。需要更好的視覺化技巧。

練習

下面使一些可能會讓你提升TensorFlow技能的一些建議練習。為了學習如何更合適地使用TensorFlow,實踐經驗是很重要的。

在你對這個Notebook進行改變之前,可能需要先備份一下。

  • 執行10,000次迭代,看看分類準確率如何。將會儲存一個checkpoint來儲存TensorFlow圖的所有變數。
  • 再執行100,000次迭代,看看分類準確率有沒有提升。然後再執行100,000次。準確率有提升嗎,你認為值得這些增加的計算時間嗎?
  • 試著再預處理階段改變影象的變體。
  • 試著改變神經網路的結構。你可以讓神經網路更大或更小。這對訓練時間或分類準確率有什麼影響?要注意的是,當你改變了神經網路結構時,就無法重新載入checkpoints了。
  • 試著在第二個卷積層使用batch-normalization。也試試在倆個層中都刪掉它。
  • 研究一些CIFAR-10上的更好的神經網路 ,試著實現它們。
  • 向朋友解釋程式如何工作。

相關文章