論文解讀(GCC)《Efficient Graph Convolution for Joint Node RepresentationLearning and Clustering》

發表於2022-06-28

論文資訊

論文標題:Efficient Graph Convolution for Joint Node RepresentationLearning and Clustering
論文作者:Chakib Fettal, Lazhar Labiod,Mohamed Nadif
論文來源:2021, WSDM
論文地址:download
論文程式碼:download

1 Introduction

   一個統一的框架中解決了節點嵌入和聚類問題。

2 Method

  整體框架:
  

2.1 Joint Graph Representation Learning and Clustering

  將同時進行的節點嵌入和聚類問題表述如下

    $\begin{array}{l}&\underset{\theta_{1}, \theta_{2}, \mathbf{G}, \mathbf{F}}{\text{ min }} &\;\;\underbrace{\left\|\operatorname{dec}_{\theta_{2}}\left(\operatorname{enc}_{\theta_{1}}(\operatorname{agg}(\mathbf{A}, \mathbf{X}))\right)-\operatorname{agg}(\mathbf{A}, \mathbf{X})\right\|^{2}}_{\text {reconstruction term }}+\alpha \underbrace{\left\|\operatorname{enc}_{\theta_{1}}(\operatorname{agg}(\mathrm{A}, \mathrm{X}))-\mathrm{GF}\right\|^{2}}_{\text {clustering regularization term }}\\&\text { s.t. }& \mathrm{G} \in\{0,1\}^{n \times k}, \mathbf{G 1}_{k}=\mathbf{1}_{n}\end{array}\quad\quad(1)$
  其中:
    • $\mathrm{G} \in\{0,1\}^{n \times k}$ 是二值分類矩陣;
    • $\mathbf{F} \in \mathbb{R}^{k \times d}$ 在嵌入空間中發揮質心的作用;
    • $\alpha$ 是調節尋求重構和聚類之間權衡的係數;
  注意,聚類正則化器是編碼觀測值上的均值聚類損失[25]。它懲罰不導致聚類友好表示的變換。

2.2 Linear Graph Embedding

  Encoder 類似 Linear graph autoencoders (LGAE) [33] ,本文提出:

    $Z=\operatorname{enc}\left(\operatorname{agg}(\mathbf{A}, \mathbf{X}) ; \mathbf{W}_{1}\right)=\operatorname{agg}(\mathbf{A}, \mathbf{X}) \mathbf{W}_{1}$

  Decoder 即一個簡單的線性變換:

    $\operatorname{dec}\left(\mathbf{Z} ; \mathbf{W}_{2}\right)=\mathbf{Z} \mathbf{W}_{2}$

2.3 Normalized Simple Graph Convolution

  本文的聚合函式受到 SGC [42] 中提出的簡單圖卷積的啟發。設為:

    $\operatorname{agg}(\mathbf{A}, \mathbf{X})=\mathbf{T}^{p} \mathbf{X}$

  其中,$T$ 不是新增了自環的對稱標準化鄰接矩陣,本文 $T$  定義為 :

    $\mathrm{T}=\mathrm{D}_{\mathrm{T}}^{-1}(\mathrm{I}+\tilde{\mathrm{S}})$

  其中:

    • $\tilde{\mathrm{S}}=\tilde{\mathbf{D}}^{-1 / 2} \tilde{\mathrm{A}} \tilde{\mathrm{D}}^{-1 / 2}$;
    • $\tilde{\mathrm{A}}=\mathrm{A}+\mathrm{I}$;
    • $\tilde{\mathbf{D}}$ 是從 $\tilde{\mathrm{A}}$ 得出的度矩陣;
    • $\mathrm{D}_{\mathrm{T}}$ 是從 $I + \tilde{\mathrm{S}}$ 得出的度矩陣;

  GCN 的頻率響應函式 $p(\lambda)=1-\tilde{\lambda}_{i} \in[-1,1)$。

  SGC 的傳播矩陣為 $\mathbf{I}-\tilde{\mathbf{S}}=\mathbf{I}-\tilde{\mathbf{D}}^{-1 / 2}(\mathbf{I}-\tilde{\mathbf{L}}) \tilde{\mathbf{D}}^{-1 / 2}$,其頻率響應函式為 $h\left(\tilde{\lambda}_{l}\right)=1-\tilde{\lambda}_{l} $,該濾波器在 $[0,1]$ 上是低通的,而不是 $[0,1.5]$。然後,本文建議進一步新增自迴圈和行規範化矩陣 $\tilde{\mathrm{S}}$。這將產生以下影響

    • 從譜域的角度來看:所提出的歸一化進一步縮小了矩陣的譜域到 $[0,1]$ 中,如圖2所示,這使得濾波器真正的低通;
    • 從空間域的角度來看:每個轉換後的頂點成為鄰居的加權平均值,這更直觀,但它也考慮了列度資訊,不像直接隨機遊走鄰接歸一化;

  本文的問題變成:

    $\begin{array}{l}&\underset{\mathrm{G}, \mathbf{F}, \mathbf{W}_{1}, \mathbf{W}_{2}}{\text{min }}  &\left\|\mathbf{T}^{p} \mathbf{X}-\mathbf{T}^{p} \mathbf{X} \mathbf{W}_{1} \mathbf{W}_{2}\right\|^{2}+\alpha\left\|\mathbf{T}^{p} \mathbf{X} \mathbf{W}_{1}-\mathrm{GF}\right\|^{2} \\&\text { s.t. } &\mathrm{G} \in\{0,1\}^{n \times k}, \mathbf{G 1}_{k}=\mathbf{1}_{n}\end{array}$

  前項代表自編碼器重構作用,後項代表嵌入空間聚類的作用。本文對於權重係數取相等($\alpha =1$)。

2.5 Graph Convolutional Clustering

  為使得嵌入空間資訊和聚類資訊相互補充,本文設定 $\mathrm{W}=\mathrm{W}_{1}=\mathrm{W}_{2}^{\top}$,並新增一個正交性約束,所以 $Eq.4$ 變為:

    $\begin{array}{l}\underset{\mathrm{G}, \mathrm{F}, \mathbf{W}}{\text{min }}&\left\|\mathrm{T}^{p} \mathbf{X}-\mathbf{T}^{p} \mathbf{X W W}{ }^{\top}\right\|^{2}+\left\|\mathrm{T}^{p} \mathbf{X W}-\mathrm{GF}\right\|^{2} \\\text { s.t. } & \mathrm{G} \in\{0,1\}^{n \times k}, \mathbf{G} \mathbf{1}_{k}=\mathbf{1}_{n}, \mathbf{W}^{\top} \mathbf{W}=\mathbf{I}_{k}\end{array}\quad\quad\quad(5)$

  與 [43] 類似,該問題等價於

    $\begin{array}{l}\underset{\mathrm{G}, \mathrm{F}, \mathbf{W}}{\text{min }}&\left\|\mathrm{T}^{p} \mathbf{X}-\mathrm{GFW}^{\top}\right\|^{2} \\\text { s.t. } & \mathrm{G} \in\{0,1\}^{n \times k}, \mathbf{G} \mathbf{1}_{k}=\mathbf{1}_{n}, \mathbf{W}^{\top} \mathbf{W}=\mathbf{I}_{k}\end{array}\quad\quad\quad(6)$

證明:
  首先分解重構項:

    $\begin{aligned}\left\|\mathbf{T}^{p} \mathbf{X}-\mathbf{T}^{p} \mathbf{X W} \mathbf{W}^{\top}\right\|^{2} &=\left\|\mathbf{T}^{p} \mathbf{X}\right\|^{2}+\left\|\mathbf{T}^{p} \mathbf{X W} \mathbf{W}^{\top}\right\|^{2}-2\left\|\mathbf{T}^{p} \mathbf{X W}\right\|^{2} \\&=\left\|\mathbf{T}^{p} \mathbf{X}\right\|^{2}-\left\|\mathbf{T}^{p} \mathbf{X W}\right\|^{2} \quad \text { due to } \mathbf{W}^{\top} \mathbf{W}=\mathbf{I}_{k}\end{aligned}$

  其次,聚類正則化項分解為:

    $\left\|\mathrm{T}^{p} \mathrm{XW}-\mathrm{GF}\right\|^{2}=\left\|\mathrm{T}^{p} \mathrm{XW}\right\|^{2}+\|\mathrm{GF}\|^{2}-2 \operatorname{Tr}\left(\left(\mathrm{T}^{p} \mathrm{XW}\right)^{\top} \mathrm{GF}\right)$

  上述兩個結果表示式求和:

    $\begin{array}{r}\left\|\mathbf{T}^{p} \mathbf{X}\right\|^{2}+\|\mathrm{GF}\|^{2}-2 \operatorname{Tr}\left(\left(\mathrm{T}^{p} \mathrm{XW}\right)^{\top} \mathrm{GF}\right)=\left\|\mathrm{T}^{p} \mathrm{X}-\mathrm{GFW}^{\top}\right\|^{2} \\\text { due to }\left\|\mathrm{GFW}{ }^{\top}\right\|=\|\mathrm{GF}\|\end{array}$

  因此,優化 $\text{Eq.5}$ 等價於優化 $\text{Eq.6}$。

3 Optimization and algorithm

  該演算法交替固定 $F$、$G$ 和 $W$ 中兩個矩陣 ,並求解第三個矩陣。

3.1 Optimization Procedure

Initialization

  對 $\mathbf{T}^{p} \mathbf{X}$ 應用主成分分析(PCA) 得到的前 $f$ 個分量來初始化 $\mathbf{W}$。然後在 $\mathbf{T}^{p} \mathbf{X}$ 上應用 k-means 得到 $\mathbf{F}$ 和 $\mathrm{G}$。

Update Rule for $\mathbf{F}$

  通過固定 $\mathrm{G}$ 和 $\mathrm{W}$ 並求解 $\mathbf{F}$,我們得到了一個線性最小二乘問題。通過將導數設為零,得到了對給定問題的最優解的正態方程。然後是更新規則

    $\mathbf{F}=\left(\mathrm{G}^{\top} \mathrm{G}\right)^{-1} \mathrm{G}^{\top} \mathrm{T}^{p} \mathbf{X W}\quad\quad\quad(7)$

  直觀地說,每個行向量 $\mathrm{f}_{i}$ 被設定為分配給叢集 $i$ 的嵌入 $\mathrm{XW}$ 的平均值。並通過 K-means 更新質心矩陣。

Update Rule for $\mathbf{W}$

  固定 $Eq.6$ 中的 $\mathrm{F}$ 和 $\mathrm{G}$,所以更新規則如下:

    $\mathbf{W}=\mathbf{U V}^{\top} \quad \text { s.t. } \quad[\mathrm{U}, \Sigma, \mathrm{V}]=\operatorname{SVD}\left(\left(\mathrm{T}^{p} \mathbf{X}\right)^{\top} \mathrm{GF}\right)$

  其中,

    • $\Sigma=\left(\sigma_{i i}\right)$  
    • $U$ 和 $V$ 分別代表 $\left(\mathrm{T}^{p} \mathbf{X}\right)^{\top} \mathrm{GF}$ 的特徵值和左、右特徵向量;

  固定 $F$ 和 $G$ 產生如下問題:

    $\underset{\mathrm{W}}{\text{min }}\left\|\mathrm{T}^{p} \mathrm{X}-\mathrm{GFW}^{\top}\right\|^{2} \quad \text { s.t. } \quad \mathbf{W}^{\top} \mathbf{W}=\mathbf{I}_{k} .$

  因為:$\left\|\mathbf{T}^{p} \mathbf{X}-\mathbf{G F W}^{\top}\right\|^{2}=\left\|\mathbf{T}^{p} \mathbf{X}\right\|^{2}+\left\|\mathbf{G F W}^{\top}\right\|^{2}-2 \operatorname{Tr}\left(\mathbf{W F}^{\top} \mathbf{G}^{\top} \mathbf{T}^{p} \mathbf{X}\right)$ 和 $\left\|\mathrm{GFW}^{\top}\right\|^{2}=\|\mathrm{GF}\|^{2}$,所以 $\text{Eq.9}$ 等價於

    $\underset{\mathbf{W}}{\text{max}}\operatorname{Tr}\left(\mathbf{W F}^{\top} \mathbf{G}^{\top} \mathbf{T}^{p} \mathbf{X}\right) \quad \text { s.t. } \quad \mathbf{W}^{\top} \mathbf{W}=\mathbf{I}_{k} .$

  由於 $[\mathrm{U}, \Sigma, \mathrm{V}]=\operatorname{SVD}\left(\mathbf{F}^{\top} \mathbf{G}^{\top} \mathrm{T}^{p} \mathrm{X}\right)$,所以有

    $\begin{aligned}\operatorname{Tr}\left(\mathbf{W F}^{\top} \mathbf{G}^{\top} \mathbf{T}^{p} \mathbf{X}\right) &=\operatorname{Tr}\left(\mathbf{W} \mathbf{U} \Sigma \mathbf{V}^{\top}\right) \\&=\sum\limits_{i=1}^{f} \sigma_{i i}<\mathbf{w}_{i}^{\prime} \mathbf{U}, \mathbf{v}_{i}^{\prime}>\\& \leq \sum\limits_{i=1}^{f} \sigma_{i i}\left\|\mathbf{w}_{i}^{\prime} \mathbf{U}\right\| \times\left\|\mathbf{v}_{i}^{\prime}\right\|=\sum\limits_{i=1}^{f} \sigma_{i i}=\operatorname{Tr}(\Sigma)\end{aligned}$

  這意味著當 $\operatorname{Tr}\left(\mathbf{W U \Sigma V ^ { \top }}\right)=\operatorname{Tr}(\Sigma)$ 或當 $\mathbf{V}^{\top} \mathbf{W U}=  I$ 時達到了 $Eq.9$ 的上界,即在 $\mathbf{W}=\mathbf{V U}^{\top} $ 時達到了最大值。

Update Rule for G

  通過固定 $F$ 和 $W$ 並求解 $F$,我們得到了一個可以通過 k-means 演算法的分配步驟進行優化的問題。那麼,更新規則定為

    $g_{i j^{*}} \leftarrow\left\{\begin{array}{ll}1 & \text { if } j^{*}=\arg \min _{j}\left\|\left(\mathbf{T}^{p} \mathbf{X W}\right)_{i}-\mathbf{f}_{j}\right\|^{2} \\0 & \text { otherwise. }\end{array}\right.\quad\quad\quad(10)$

3.2 The GCC Algorithm

  演算法步驟如 Algorithm 1 所示:

  

  傳播階 $p$ 的選擇對演算法的整體效能非常重要。較小的 $p$ 可能意味著傳播的鄰域資訊不足,而較大的 $p$  可能導致圖訊號的過度平滑。Figure 3 顯示了使用 t-SNE 演算法[39]對不同 $p$ 值的 Cora 資料集的投影。

  

  對於 $p$ 的選擇如 Algorithm 2 所示:

  

4 Experiments

資料集

  

聚類結果

  

執行時間

  

5 Conclusion

  在本文中,我們利用圖卷積網路的簡單公式,得到了一個有效的模型,在一個統一的框架中解決了節點嵌入和聚類問題。首先,我們提供了一個歸一化,使GCN編碼器在嚴格意義上充當低通濾波器。其次,我們提出了一種新的方法,其中需要優化的目標函式利用了來自GCN嵌入重建損失和這些嵌入的簇結構的資訊。第三,我們推導了複雜性被嚴格研究的GCC。在此過程中,我們展示了GCC如何以更有效的方式比其他圖聚類演算法獲得更好的效能。請注意,所有比較的方法在本質上都是無監督的,以便與我們的模型進行公平的比較。我們的實驗證明了我們的方法的興趣。我們還展示了GCC是如何與其他方法相關的,包括一些GCN變體。

  該模型是一種靈活的模型,可以從多個方向進行擴充套件,為今後的研究提供了機會。例如,在我們的方法中,我們假設調節尋求重建和聚類之間的權衡的 $\alpha$ 係數等於1,研究這個值的選擇將是很有趣的。另一方面,雖然我們這項工作的重點是聚類,但值得將問題擴充套件到這樣的,例如,協同聚類,這在文件聚類等許多現實場景中是有用的。

修改歷史

2022-06-27 建立文章

論文解讀目錄

相關文章