2024 暑假平邑一中集訓整合(下)

dienter發表於2024-08-16

Day10

考試

T3

形式化題意,給定 \(n,m\),求\(\sum^n_{i=1} \sum^m_{j=1} \displaystyle \begin{pmatrix}n\\i\\\end{pmatrix}\displaystyle \begin{pmatrix}i\\j\\\end{pmatrix}\)

推式子:

\[\sum^n_{i=1} \sum^m_{j=1} \displaystyle \begin{pmatrix} n\\ i\\ \end{pmatrix} \displaystyle \begin{pmatrix} i\\ j\\ \end{pmatrix} \]

\[\Longrightarrow \sum^n_{i=1} \sum^m_{j=1} \displaystyle \begin{pmatrix} n\\ j\\ \end{pmatrix} \displaystyle \begin{pmatrix} n-j\\ i-j\\ \end{pmatrix} \]

\[\Longrightarrow \sum^n_{j=1} \sum^m_{i=1} \displaystyle\begin{pmatrix} n\\ i\\ \end{pmatrix} \displaystyle \begin{pmatrix} n-i\\ j-i\\ \end{pmatrix} \]

\[\Longrightarrow \sum^m_{i=1} \displaystyle\begin{pmatrix} n\\ i\\ \end{pmatrix} \sum^n_{j=1} \displaystyle \begin{pmatrix} n-i\\ j-i\\ \end{pmatrix} \]

\[\Longrightarrow \sum^m_{i=1} \displaystyle\begin{pmatrix} n\\ i\\ \end{pmatrix} \displaystyle \begin{pmatrix} \displaystyle \begin{pmatrix} n-i\\ 1-i\\ \end{pmatrix} + \displaystyle \begin{pmatrix} n-i\\ 2-i\\ \end{pmatrix} +\dots+ \displaystyle \begin{pmatrix} n-i\\ n-i\\ \end{pmatrix} \end{pmatrix} \]

\[\Longrightarrow \sum^m_{i=1} \displaystyle\begin{pmatrix} n\\ i\\ \end{pmatrix} 2^{n-i} \]

再根據\(C^{i+1}_n=\frac{n-i}{i+1} \times C^i_n\)遞推組合數即可


T4

同餘最短路板子題