Write a program to solve a Sudoku puzzle by filling the empty cells.
Empty cells are indicated by the character '.'
.
You may assume that there will be only one unique solution.
A sudoku puzzle...
...and its solution numbers marked in red.
這道求解數獨的題是在之前那道 Valid Sudoku 驗證數獨的基礎上的延伸,之前那道題讓我們驗證給定的陣列是否為數獨陣列,這道讓我們求解數獨陣列,跟此題類似的有 Permutations 全排列,Combinations 組合項, N-Queens N皇后問題等等,其中尤其是跟 N-Queens N皇后問題的解題思路及其相似,對於每個需要填數字的格子帶入1到9,每代入一個數字都判定其是否合法,如果合法就繼續下一次遞迴,結束時把數字設回'.',判斷新加入的數字是否合法時,只需要判定當前數字是否合法,不需要判定這個陣列是否為數獨陣列,因為之前加進的數字都是合法的,這樣可以使程式更加高效一些,具體實現如程式碼所示:
class Solution { public: void solveSudoku(vector<vector<char> > &board) { if (board.empty() || board.size() != 9 || board[0].size() != 9) return; solveSudokuDFS(board, 0, 0); } bool solveSudokuDFS(vector<vector<char> > &board, int i, int j) { if (i == 9) return true; if (j >= 9) return solveSudokuDFS(board, i + 1, 0); if (board[i][j] == '.') { for (int k = 1; k <= 9; ++k) { board[i][j] = (char)(k + '0'); if (isValid(board, i , j)) { if (solveSudokuDFS(board, i, j + 1)) return true; } board[i][j] = '.'; } } else { return solveSudokuDFS(board, i, j + 1); } return false; } bool isValid(vector<vector<char> > &board, int i, int j) { for (int col = 0; col < 9; ++col) { if (col != j && board[i][j] == board[i][col]) return false; } for (int row = 0; row < 9; ++row) { if (row != i && board[i][j] == board[row][j]) return false; } for (int row = i / 3 * 3; row < i / 3 * 3 + 3; ++row) { for (int col = j / 3 * 3; col < j / 3 * 3 + 3; ++col) { if ((row != i || col != j) && board[i][j] == board[row][col]) return false; } } return true; } };