Given two words (start and end), and a dictionary, find the length of shortest transformation sequence from start to end, such that:
- Only one letter can be changed at a time
- Each intermediate word must exist in the dictionary
For example,
Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]
As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog"
,
return its length 5
.
Note:
- Return 0 if there is no such transformation sequence.
- All words have the same length.
- All words contain only lowercase alphabetic characters.
題解:
這道題是套用BFS同時也利用BFS能尋找最短路徑的特性來解決問題。
把每個單詞作為一個node進行BFS。當取得當前字串時,對他的每一位字元進行從a~z的替換,如果在字典裡面,就入隊,並將下層count++,並且為了避免環路,需把在字典裡檢測到的單詞從字典裡刪除。這樣對於當前字串的每一位字元安裝a~z替換後,在queue中的單詞就作為下一層需要遍歷的單詞了。
正因為BFS能夠把一層所有可能性都遍歷了,所以就保證了一旦找到一個單詞equals(end),那麼return的路徑肯定是最短的。
像給的例子 start = hit,end = cog,dict = [hot, dot, dog, lot, log]
按照上述解題思路的走法就是:
level = 1 hit dict = [hot, dot, dog, lot, log]
ait bit cit ... xit yit zit , hat hbt hct ... hot ... hxt hyt hzt , hia hib hic ... hix hiy hiz
level = 2 hot dict = [dot, dog, lot, log]
aot bot cot dot ... lot ... xot yot zot,hat hbt hct ... hxt hyt hzt,hoa hob hoc ... hox hoy hoz
level = 3 dot lot dict = [dog log]
aot bot ... yot zot,dat dbt ...dyt dzt,doa dob ... dog .. doy doz,
aot bot ... yot zot,lat lbt ... lyt lzt,loa lob ... log... loy loz
level = 4 dog log dict = []
aog bog cog
level = 5 cog dict = []
程式碼如下:
2 if(start==null || end==null || start.length()==0 || end.length()==0 || start.length()!=end.length())
3 return 0;
4
5 LinkedList<String> wordQueue = new LinkedList<String>();
6 int level = 1; //the start string already count for 1
7 int curnum = 1;//the candidate num on current level
8 int nextnum = 0;//counter for next level
9
10 wordQueue.add(start);
11
12 while(!wordQueue.isEmpty()){
13 String word = wordQueue.poll();
14 curnum--;
15
16 for(int i = 0; i < word.length(); i++){
17 char[] wordunit = word.toCharArray();
18 for(char j = 'a'; j <= 'z'; j++){
19 wordunit[i] = j;
20 String temp = new String(wordunit);
21
22 if(temp.equals(end))
23 return level+1;
24 if(dict.contains(temp)){
25 wordQueue.add(temp);
26 nextnum++;
27 dict.remove(temp);
28 }
29 }
30 }
31
32 if(curnum == 0){
33 curnum = nextnum;
34 nextnum = 0;
35 level++;
36 }
37 }
38
39 return 0;
40 }