符號化方法初探 100pts
簽到題?做了得有1.5h+;
考慮全是正數或全是負數的情況,那麼我們可以對其做一次類似於字首和或字尾和的操作,需要 $ n - 1 $ 次;
所以我們只需將數列中的數全部轉化成正數或負數即可,具體地,找出所有正數的和和所有負數的和,如果前者比後者要大,那麼就將所有正數加起來,然後讓所有負數加它,反之同理,然後做一遍上一步的類似於字首和或字尾和的操作即可;
總運算元:$ 2n - 2 $ 次;
點選檢視程式碼
#include <iostream>
#include <cstdio>
#include <vector>
#include <cmath>
using namespace std;
int n, m;
long long a[500005];
struct sss{
long long i, j;
}e[2000005];
long long sumz, sumf;
vector<int> z, f;
int main() {
cin >> n;
for (int i = 1; i <= n; i++) {
cin >> a[i];
if (a[i] > 0) {
sumz += a[i];
z.push_back(i);
} else {
sumf += a[i];
f.push_back(i);
}
}
if (sumz >= abs(sumf)) {
for (int i = 1; i < z.size(); i++) {
e[++m] = {z[i], z[0]};
}
for (int i = 0; i < f.size(); i++) {
e[++m] = {z[0], f[i]};
}
for (int i = 2; i <= n; i++) {
e[++m] = {i - 1, i};
}
} else {
for (int i = 1; i < f.size(); i++) {
e[++m] = {f[i], f[0]};
}
for (int i = 0; i < z.size(); i++) {
e[++m] = {f[0], z[i]};
}
for (int i = n - 1; i >= 1; i--) {
e[++m] = {i + 1, i};
}
}
cout << m << endl;
for (int i = 1; i <= m; i++) {
cout << e[i].i << ' ' << e[i].j << endl;
}
return 0;
}
無標號 Sequence 構造 0pts
原題:Luogu P10102 [GDKOI2023 提高組] 矩陣
暴力 $ \Theta(n^3) $ 很好打,然後就掛了。。。
主要是最佳化;
應該可以算是套路吧?當然也是隨機化;
把左右兩邊同時乘一個 $ 1 * n $ 的矩陣,這樣我們就可以在 $ \Theta(n^2) $ 的時間裡判斷是否相等;
這個矩陣隨一個就行;
只要不乘出來變成 $ 0 $,那麼這個東西就是對的;
正確率應該是 $ \frac{1}{998244353} $(貌似是秩-零化定理,我不會);
當然,你也可以讓它最後變成 $ 1 * 1 $ 的矩陣,但時間複雜度是一樣的,而且最後的正確率也會變低;
注意空間;
點選檢視程式碼
#include <iostream>
#include <cstdio>
#include <ctime>
#include <cstdlib>
using namespace std;
#define int long long
const int mod = 998244353;
int t;
int n;
long long a[3005][3005], b[3005][3005], c[3005][3005], d[3005], e[3005], f[3005], g[3005];
main() {
srand(time(0));
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> t;
while(t--) {
cin >> n;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
cin >> a[i][j];
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
cin >> b[i][j];
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
cin >> c[i][j];
}
}
for (int i = 1; i <= n; i++) {
d[i] = (rand() + mod) % mod;
}
for (int i = 1; i <= n; i++) {
e[i] = 0;
f[i] = 0;
g[i] = 0;
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
e[i] = (e[i] + a[j][i] * d[j] % mod) % mod;
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
f[i] = (f[i] + b[j][i] * e[j] % mod) % mod;
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
g[i] = (g[i] + c[j][i] * d[j] % mod) % mod;
}
}
bool vis = false;
for (int i = 1; i <= n; i++) {
if (f[i] != g[i]) {
vis = true;
break;
}
}
if (vis) {
cout << "No" << endl;
} else {
cout << "Yes" << endl;
}
}
return 0;
}