pytorch——VGG網路搭建
import os
import json
import torch
import torch.nn as nn
from torchvision import transforms, datasets
import torch.optim as optim
from tqdm import tqdm
from model import vgg
def main():
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("using {} device.".format(device))
data_transform = {
"train": transforms.Compose([transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
"val": transforms.Compose([transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}
data_root = os.path.abspath(os.path.join(os.getcwd(), "../..")) # get data root path
image_path = os.path.join(data_root, "data_set", "flower_data") # flower data set path
assert os.path.exists(image_path), "{} path does not exist.".format(image_path)
train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"),
transform=data_transform["train"])
train_num = len(train_dataset)
# {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
flower_list = train_dataset.class_to_idx
cla_dict = dict((val, key) for key, val in flower_list.items())
# write dict into json file
json_str =外匯跟單gendan5.com json.dumps(cla_dict, indent=4)
with open('class_indices.json', 'w') as json_file:
json_file.write(json_str)
batch_size =32
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
print('Using {} dataloader workers every process'.format(nw))
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size, shuffle=True,
num_workers=0)
validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"),
transform=data_transform["val"])
val_num = len(validate_dataset)
validate_loader = torch.utils.data.DataLoader(validate_dataset,
batch_size=batch_size, shuffle=False,
num_workers=0)
print("using {} images for training, {} images for validation.".format(train_num,
val_num))
# test_data_iter = iter(validate_loader)
# test_image, test_label = test_data_iter.next()
model_name = "vgg16"
net = vgg(model_name=model_name, num_classes=5, init_weights=True)
net.to(device)
loss_function = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.0001)
epochs = 30
best_acc = 0.0
save_path = './{}Net.pth'.format(model_name)
train_steps = len(train_loader)
for epoch in range(epochs):
# train
net.train()
running_loss = 0.0
train_bar = tqdm(train_loader)
for step, data in enumerate(train_bar):
images, labels = data
optimizer.zero_grad()
outputs = net(images.to(device))
loss = loss_function(outputs, labels.to(device))
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
epochs,
loss)
# validate
net.eval()
acc = 0.0 # accumulate accurate number / epoch
with torch.no_grad():
val_bar = tqdm(validate_loader)
for val_data in val_bar:
val_images, val_labels = val_data
outputs = net(val_images.to(device))
predict_y = torch.max(outputs, dim=1)[1]
acc += torch.eq(predict_y, val_labels.to(device)).sum().item()
val_accurate = acc / val_num
print('[epoch %d] train_loss: %.3f val_accuracy: %.3f' %
(epoch + 1, running_loss / train_steps, val_accurate))
if val_accurate > best_acc:
best_acc = val_accurate
torch.save(net.state_dict(), save_path)
print('Finished Training')
if __name__ == '__main__':
main()
來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/69946337/viewspace-2851951/,如需轉載,請註明出處,否則將追究法律責任。
相關文章
- VGG網路的Pytorch實現PyTorch
- Pytorch入門中 —— 搭建網路模型PyTorch模型
- 從零搭建Pytorch模型教程(三)搭建Transformer網路PyTorch模型ORM
- 【小白學PyTorch】1 搭建一個超簡單的網路PyTorch
- 如何入門Pytorch之四:搭建神經網路訓練MNISTPyTorch神經網路
- 經典卷積神經網路LeNet&AlexNet&VGG卷積神經網路
- 一文弄懂pytorch搭建網路流程+多分類評價指標PyTorch指標
- 用 Pytorch 理解卷積網路PyTorch卷積
- Pytorch網路結構視覺化PyTorch視覺化
- pytorch--迴圈神經網路PyTorch神經網路
- 使用pytorch快速搭建神經網路實現二分類任務(包含示例)PyTorch神經網路
- 總結一下使用pytorch搭建神經網路的一般步驟PyTorch神經網路
- Make Your First GAN With PyTorch 之 第一個 PyTorch 神經網路PyTorch神經網路
- 用pytorch實現LeNet-5網路PyTorch
- Tensor:Pytorch神經網路界的NumpyPyTorch神經網路
- 經典卷積神經網路結構——LeNet-5、AlexNet、VGG-16卷積神經網路
- 使用Pytorch搭建模型PyTorch模型
- Pytorch使用Tensorboard視覺化網路結構PyTorchORB視覺化
- 使用PyTorch演示實現神經網路過程PyTorch神經網路
- PyTorch入門-殘差卷積神經網路PyTorch卷積神經網路
- Pytorch | Tutorial-04 構建神經網路模型PyTorch神經網路模型
- 如何搭建“網路課堂”
- 0609-搭建ResNet網路
- 簡單使用PyTorch搭建GAN模型PyTorch模型
- 網路搭建的基本流程包括
- 會議WiFi網路租賃,臨時網路租賃,展會網路搭建WiFi
- 圖卷積神經網路分類的pytorch實現卷積神經網路PyTorch
- Pytorch中自定義神經網路卷積核權重PyTorch神經網路卷積
- Pytorch實戰入門(一):搭建MLPPyTorch
- 1.CNN圖片單標籤分類(基於TensorFlow實現基礎VGG16網路)CNN
- 網路拓撲—FTP服務搭建FTP
- 商企網路拓撲的搭建
- SSL連線,搭建網路安全道路
- LeNet-5網路搭建詳解
- Python 開發環境搭建(01):vmware workstation 網路搭建Python開發環境
- ResNet詳解:網路結構解讀與PyTorch實現教程PyTorch
- 07_利用pytorch的nn工具箱實現LeNet網路PyTorch
- 神經網路中的降維和升維方法 (tensorflow & pytorch)神經網路PyTorch