Given two words (start and end), and a dictionary, find the length of shortest transformation sequence from start to end, such that:
- Only one letter can be changed at a time
- Each intermediate word must exist in the dictionary
For example,
Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]
As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog"
,
return its length 5
.
注意題目意思是:給你一個單詞,每次只能改變一個字母,改變後的單詞要在dict中,最少經過過少次改變可以變成給定單詞
本題通過廣度搜尋進行搜尋
如
hit
經過一次改變 hot (其他單詞都不在dict中,此時將hot從dict刪除,這樣可以避免hot->hot的迴圈)
經過第二次改變 dot lot (將dot和lot從dict中刪除,dict={"dog","log"})
經過第三次改變 dog log
經過第四次改變 cog (找到,注意start算一次)
class Solution { public: int ladderLength(string start, string end, unordered_set<string> &dict) { int res = 0; queue<string> que; que.push(start); bool flag = false; while(!que.empty() && !flag){ int cnt = que.size(); res++; while(cnt-->0){ string a = que.front();que.pop(); if(a == end) {flag = true;break;} for(int i = 0 ; i < a.length();++ i){ string bk(a); for(char j ='a' ; j <= 'z'; ++ j ){ bk[i] = j; if(dict.find(bk)!=dict.end() && bk!=a){ que.push(bk); dict.erase(bk); } } } } } if(!flag) return 0; else return res; } };