[雜項] 刷題記錄

Peppa_Even_Pig發表於2024-07-30

點分治

  1. Luogu P4206 [NOI2005] 聰聰與可可

板子題,記一下 $ mod \ 3 $ 意義下餘數分別為 $ 1 $ $ 2 $ $ 0 $ 的個數,合併時統計即可;

  1. Luogu P4149 [IOI2011] Race

板子題,開個二元組記錄一下權值和邊數即可;

  1. Luogu P4178 Tree

板子題,和第一題類似,只不過開個樹狀陣列記錄一下字首和,然後就解決了;

  1. Luogu P3714 [BJOI2017] 樹的難題

這題。。。我TM調了三個小時,結果學校OJ上還得卡常!!!

只要用上線段樹等資料結構,學校OJ就過不去

順便發洩一下自己的情緒:上次模擬賽T2開了27個線段樹,常數確實有些大,但是Luogu上過了,學校OJ上就咋都過不去;
你可能會說,學校OJ咋能和Luogu比呢?
但今天上午,一道虛樹的入門題,時限2s,在Luogu上跑剛過1s,結果在學校OJ上直接TLE倆點,經過我嚴謹的時間複雜度分析,大約是2e8+1e7,我就不理解了,就TM多這麼100ms咋就跑不過去了?(其實可能確實是我菜,整不出題解的優秀複雜度),跟題解一比,多了個線段樹的複雜度,整的我現在打比賽都不敢用線段樹,但就是每場比賽都TM能想出來用線段樹的卡常做法,結果今天上午這題經過_lhx_和cpa一個多小時的大力卡常才勉強過;
現在能力沒咋提升,倒是卡常進步不少;

迴歸正題;

其實思路不難,但細節太多了。。。

首先,路徑還是能拆分成兩類:經過根的和不經過根的;

所以可以點分治;

首先將每個點的兒子按大小排序,因為這樣我們就可以比較方便的處理到根的路徑顏色相同的子樹們;

然後進行點分治,我們開兩個線段樹,把與當前路徑顏色相同的放進一個線段樹,不同的放進一個線段樹,然後正常跑就行;

注意線段樹的清空,可以直接在根節點上打懶標記;

然後就是一些細節,不說了,可以看程式碼;

點選檢視程式碼
#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>
using namespace std;
int n, m, l, r;
int c[500005];
int rt, sum;
struct sss{
	int t, ne, w;
}e[1000005];
int h[1000005], cnt;
void add(int u, int v, int ww) {
	e[++cnt].t = v;
	e[cnt].ne = h[u];
	e[cnt].w = ww;
	h[u] = cnt;
}
vector<pair<int, int> > v[200005];
struct sas{
	int dis, sum;
}dis[200005], rem[200005], po[200005];
int maxp[1000005], siz[1000005], dep[1000005];
bool vis[1000005];
int ans;
namespace seg{
	inline int ls(int x) {
		return x << 1;
	}
	inline int rs(int x) {
		return x << 1 | 1;
	}
	struct asa{
		int l, r, ma, lz;
	}tr[2][900005];
	inline void push_up(int s, int id) {
		tr[s][id].ma = max(tr[s][ls(id)].ma, tr[s][rs(id)].ma);
	}
	inline void push_down(int s, int id) {
		if(tr[s][id].lz != 0) {
			tr[s][ls(id)].lz = tr[s][id].lz;
			tr[s][rs(id)].lz = tr[s][id].lz;
			tr[s][ls(id)].ma = tr[s][id].lz;
			tr[s][rs(id)].ma = tr[s][id].lz;
			tr[s][id].lz = 0;
		}
	}
	void bt(int s, int id, int l, int r) {
		tr[s][id].l = l;
		tr[s][id].r = r;
		if (l == r) {
			tr[s][id].ma = -0x3f3f3f3f;
			tr[s][id].lz = 0;
			return;
		}
		int mid = (l + r) >> 1;
		bt(s, ls(id), l, mid);
		bt(s, rs(id), mid + 1, r);
		push_up(s, id);
	}
	inline void clear(int s) {
		tr[s][1].lz = -0x3f3f3f3f;
		tr[s][1].ma = -0x3f3f3f3f;
	}
	int ask(int s, int id, int l, int r) {
		if (tr[s][id].l >= l && tr[s][id].r <= r) {
			return tr[s][id].ma;
		}
		push_down(s, id);
		int mid = (tr[s][id].l + tr[s][id].r) >> 1;
		if (r <= mid) return ask(s, ls(id), l, r);
		else if (l > mid) return ask(s, rs(id), l, r);
		else return max(ask(s, ls(id), l, mid), ask(s, rs(id), mid + 1, r));
	}
	void add(int s, int id, int pos, int d) {
		if (tr[s][id].l == tr[s][id].r) {
			tr[s][id].ma = max(tr[s][id].ma, d);
			tr[s][id].lz = 0;
			return;
		}
		push_down(s, id);
		int mid = (tr[s][id].l + tr[s][id].r) >> 1;
		if (pos <= mid) add(s, ls(id), pos, d);
		else add(s, rs(id), pos, d);
		push_up(s, id);
	}
}
void get_rt(int x, int f) {
	siz[x] = 1;
	maxp[x] = 0;
	for (int i = h[x]; i; i = e[i].ne) {
		int u = e[i].t;
		if (u == f || vis[u]) continue;
		get_rt(u, x);
		siz[x] += siz[u];
		maxp[x] = max(maxp[x], siz[u]);
	}
	maxp[x] = max(maxp[x], sum - siz[x]);
	if (maxp[rt] > maxp[x]) rt = x;
}
void get_dis(int x, int f, int pre) {
	dep[x] = dep[f] + 1;
	if (dep[x] > r) return;
	dis[x].dis = dep[x];
	for (int i = h[x]; i; i = e[i].ne) {
		int u = e[i].t;
		if (vis[u] || u == f) continue;
		dis[u].sum = dis[x].sum; //注意繼承的問題;
		if (e[i].w != pre && e[i].w) dis[u].sum += c[e[i].w]; //注意判斷;
		get_dis(u, x, e[i].w);
	}
}
void dfs(int x, int f) {
	if (dis[x].dis == 0) return;
	rem[++rem[0].sum] = sas{dis[x].dis, dis[x].sum};
	for (int i = h[x]; i; i = e[i].ne) {
		int u = e[i].t;
		if (u == f || vis[u]) continue;
		dfs(u, x);
	}
}
void calc(int x) {
	int color = 0;
	int o = 0;
	dep[x] = 0;
	for (int i = h[x]; i; i = e[i].ne) {
		int u = e[i].t;
		if (vis[u]) continue;
		if (color == 0) {
			color = e[i].w;
		} else if (color != e[i].w) {
			color = e[i].w;
			seg::clear(1);
			for (int j = 1; j <= o; j++) {
				seg::add(0, 1, po[j].dis, po[j].sum);
			}
			o = 0;
		}
		rem[0].sum = 0;
		dis[u].sum = c[e[i].w];
		get_dis(u, x, e[i].w);
		dfs(u, x);
		for (int j = 1; j <= rem[0].sum; j++) {
			if (rem[j].dis > r) continue;
			if (rem[j].dis >= l && rem[j].dis <= r) {
				ans = max(ans, rem[j].sum);
			}
			if (rem[j].dis == r) continue;
			if (rem[j].dis == 0) continue;
			int aa = seg::ask(0, 1, max(0, l - rem[j].dis), r - rem[j].dis);
			int bb = seg::ask(1, 1, max(0, l - rem[j].dis), r - rem[j].dis);
			bb -= c[e[i].w];
			ans = max(ans, max(rem[j].sum + aa, rem[j].sum + bb));
		}
		for (int j = 1; j <= rem[0].sum; j++) {
			if (rem[j].dis == 0) continue;
			o++;
			po[o].dis = rem[j].dis;
			po[o].sum = rem[j].sum;
		}
		for (int j = 1; j <= rem[0].sum; j++) {
			if (rem[j].dis == 0) continue;
			seg::add(1, 1, rem[j].dis, rem[j].sum);
		}
	}
	seg::clear(0);
	seg::clear(1);
}
void solve(int x) {
	vis[x] = true;
	calc(x);
	for (int i = h[x]; i; i = e[i].ne) {
		int u = e[i].t;
		if (vis[u]) continue;
		rt = 0;
		maxp[rt] = 0x3f3f3f3f;
		sum = siz[u];
		get_rt(u, 0);
		solve(rt);
	}
}
int main() {
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	cin >> n >> m >> l >> r;
	for (int i = 1; i <= m; i++) {
		cin >> c[i];
	}
	int x, y, w;
	for (int i = 1; i <= n - 1; i++) {
		cin >> x >> y >> w;
		v[x].push_back({w, y});
		v[y].push_back({w, x});
	}
	for (int i = 1; i <= n; i++) {
		sort(v[i].begin(), v[i].end());
	}
	for (int i = 1; i <= n; i++) {
		for (int j = 0; j < v[i].size(); j++) {
			add(i, v[i][j].second, v[i][j].first);
		}
	}
	seg::bt(0, 1, 0, n);
	seg::bt(1, 1, 0, n);
	ans = -0x3f3f3f3f;
	rt = 0;
	maxp[rt] = 0x3f3f3f3f;
	sum = n;
	get_rt(1, 0);
	solve(rt);
	cout << ans;
	return 0;
}

貌似題解有單調佇列的優秀做法,但我不會,有興趣的可以去看看;

走了,去卡常了