修改 Hadoop TeraSort演算法 —— 按照LongWritable型別的Key排序
近日,需要用ParMetis對大圖資料進行分割槽,其輸入是無向圖(鄰接表形式)且按照頂點ID排序,於是想到用Hadoop中的TeraSort演算法對無向圖進行排序。但Hadoop自帶TeraSort演算法是按照每行資料的前兩個字元排序的,不能滿足要求。
由於圖一般都是用鄰接表的形式儲存,改進的TeraSort演算法就是按照頂點ID進行排序,支援有向圖和無向圖,邊上可附加權值。下面以無向圖為例講述資料的輸入格式。對於下圖,
其輸入資料格式如下,以 \t 間隔,每行第一列為頂點ID。
1 2 3 4
3 1 2
2 1 3 4
4 1 2
擴充套件:只要每行的資料格式滿足:key+“\t”+value,其中key為int或long型,value型別任意。修改的TeraSort演算法就能按照key來對每一行進行排序。
修改方法:
1. 由於輸入格式變化,故首先修改TeraRecordReader類,主要是 boolean next(LongWritable key, Text value)方法,修改如何解析每行資料。程式碼如下:
public boolean next(LongWritable key, Text value) throws IOException {
if (in.next(junk, line)) {
String[] temp=line.toString().split("\t");
key.set(Long.parseLong(temp[0]));
if(temp.length!=1) {
value.set(line.toString().substring(temp[0].length()+1));
} else {
value.set("");
}
return true;
} else {
return false;
}
}
2. JobClient端的資料取樣、排序、獲取分割點等都和原TeraSort演算法類似,注意把key的型別由Text修改為LongWritable型別。
3. 在原TeraSort演算法中,每個map task首先從分散式快取中讀取分割點,然後根據分割點簡歷2-Trie樹。map task從split中依次讀入每條資料,通過Trie樹查詢每條記錄所對應的reduce task編號。
現在由於是Long型,則不需要構建Trie樹。已知分割點是儲存在splitPoints[]陣列中,按照如下公式計算reduce number,其中length等於splitPoints.length
假設reduce task數目為4(由使用者設定),分割點為34、67、97。則分割點和reduce task編號的對映關係如下:
可以看到小於34的對應第0個reduce task,34和67之間的對應第一個reduce task,67和97之間的key對應第2個reduce task,大於等於97的則對應於第3個reduce task。
主要修改int getPartition(LongWritable key, Text value, int numPartitions)方法,如下:
@Override
public int getPartition(LongWritable key, Text value, int numPartitions) {
if(key.get()<splitPoints[0].get()) {
return 0;
}
for(int i=0;i<splitPoints.length-1;i++) {
if(key.get()>=splitPoints[i].get() && key.get()<splitPoints[i+1].get()) {
return i+1;
}
}
return splitPoints.length;
}
4. 棄用TeraOutputFormat,採用預設的輸出格式就行。
job.setOutputFormat(TextOutputFormat.class);
5. 打成Jar包(TeraSort.jar),在叢集上執行即可。例如:hadoop jar TeraSort.jar TeraSortTest output 4
注意輸入引數為:<input> <output> <reduce number> 。與原TeraSort中用 -D mapred.reduce.tasks=value 不同,此處讓使用者明確指定reduce tash的數目。防止使用者忘寫的話,原TeraSort就啟動一個reduce task,那麼整個TeraSort演算法就失去意義! 執行結果如下:
6. 上述排好序的檔案,依次存在output資料夾下的:part-00000、part-00001、part-00002、part-00003。
使用 hadoop fs -getmerge output output-total 命令後,所有資料都會有序彙總到output-total檔案中。
getmerge會按照part-00000、part-00001、part-00002、part-00003的順序依次把每個檔案輸出到output-total檔案中。程式碼如下:
/** Copy all files in a directory to one output file (merge). */
public static boolean copyMerge(FileSystem srcFS, Path srcDir,
FileSystem dstFS, Path dstFile,
boolean deleteSource,
Configuration conf, String addString) throws IOException {
dstFile = checkDest(srcDir.getName(), dstFS, dstFile, false);
if (!srcFS.getFileStatus(srcDir).isDir())
return false;
OutputStream out = dstFS.create(dstFile);
try {
FileStatus contents[] = srcFS.listStatus(srcDir);
for (int i = 0; i < contents.length; i++) {
if (!contents[i].isDir()) {
InputStream in = srcFS.open(contents[i].getPath());
try {
IOUtils.copyBytes(in, out, conf, false);
if (addString!=null)
out.write(addString.getBytes("UTF-8"));
} finally {
in.close();
}
}
}
} finally {
out.close();
}
part-00000、part-00001、part-00002、part-00003的訪問順序是由namenode獲取的,對應其inode節點。
1. TeraInputFormat.java
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.undirected.graph.sort;
import java.io.IOException;
import java.util.ArrayList;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileSplit;
import org.apache.hadoop.mapred.InputSplit;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.LineRecordReader;
import org.apache.hadoop.mapred.RecordReader;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.util.IndexedSortable;
import org.apache.hadoop.util.QuickSort;
/**
* An input format that reads the first 10 characters of each line as the key
* and the rest of the line as the value. Both key and value are represented
* as Text.
*/
public class TeraInputFormat extends FileInputFormat<LongWritable,Text> {
static final String PARTITION_FILENAME = "_partition.lst";
static final String SAMPLE_SIZE = "terasort.partitions.sample";
private static JobConf lastConf = null;
private static InputSplit[] lastResult = null;
static class TextSampler implements IndexedSortable {
private ArrayList<LongWritable> records = new ArrayList<LongWritable>();
public int compare(int i, int j) {
LongWritable left = records.get(i);
LongWritable right = records.get(j);
return left.compareTo(right);
}
public void swap(int i, int j) {
LongWritable left = records.get(i);
LongWritable right = records.get(j);
records.set(j, left);
records.set(i, right);
}
public void addKey(LongWritable key) {
records.add(key);
}
/**
* Find the split points for a given sample. The sample keys are sorted
* and down sampled to find even split points for the partitions. The
* returned keys should be the start of their respective partitions.
* @param numPartitions the desired number of partitions
* @return an array of size numPartitions - 1 that holds the split points
*/
LongWritable[] createPartitions(int numPartitions) {
int numRecords = records.size();
System.out.println("Making " + numPartitions + " from " + numRecords +
" records");
if (numPartitions > numRecords) {
throw new IllegalArgumentException
("Requested more partitions than input keys (" + numPartitions +
" > " + numRecords + ")");
}
new QuickSort().sort(this, 0, records.size());
float stepSize = numRecords / (float) numPartitions;
System.out.println("Step size is " + stepSize);
LongWritable[] result = new LongWritable[numPartitions-1];
for(int i=1; i < numPartitions; ++i) {
result[i-1] = records.get(Math.round(stepSize * i));
}
// System.out.println("result :"+Arrays.toString(result));
return result;
}
}
/**
* Use the input splits to take samples of the input and generate sample
* keys. By default reads 100,000 keys from 10 locations in the input, sorts
* them and picks N-1 keys to generate N equally sized partitions.
* @param conf the job to sample
* @param partFile where to write the output file to
* @throws IOException if something goes wrong
*/
public static void writePartitionFile(JobConf conf,
Path partFile) throws IOException {
TeraInputFormat inFormat = new TeraInputFormat();
TextSampler sampler = new TextSampler();
LongWritable key = new LongWritable();
Text value = new Text();
int partitions = conf.getNumReduceTasks();
long sampleSize = conf.getLong(SAMPLE_SIZE, 100000);
InputSplit[] splits = inFormat.getSplits(conf, conf.getNumMapTasks());
int samples = Math.min(10, splits.length);
long recordsPerSample = sampleSize / samples;
int sampleStep = splits.length / samples;
long records = 0;
// take N samples from different parts of the input
for(int i=0; i < samples; ++i) {
RecordReader<LongWritable,Text> reader =
inFormat.getRecordReader(splits[sampleStep * i], conf, null);
while (reader.next(key, value)) {
sampler.addKey(key);
key=new LongWritable();
records += 1;
if ((i+1) * recordsPerSample <= records) {
break;
}
}
}
FileSystem outFs = partFile.getFileSystem(conf);
if (outFs.exists(partFile)) {
outFs.delete(partFile, false);
}
SequenceFile.Writer writer =
SequenceFile.createWriter(outFs, conf, partFile, LongWritable.class,
NullWritable.class);
NullWritable nullValue = NullWritable.get();
for(LongWritable split : sampler.createPartitions(partitions)) {
writer.append(split, nullValue);
}
writer.close();
}
static class TeraRecordReader implements RecordReader<LongWritable,Text> {
private LineRecordReader in;
private LongWritable junk = new LongWritable();
private Text line = new Text();
public TeraRecordReader(Configuration job,
FileSplit split) throws IOException {
in = new LineRecordReader(job, split);
}
public void close() throws IOException {
in.close();
}
public LongWritable createKey() {
return new LongWritable();
}
public Text createValue() {
return new Text();
}
public long getPos() throws IOException {
return in.getPos();
}
public float getProgress() throws IOException {
return in.getProgress();
}
public boolean next(LongWritable key, Text value) throws IOException {
if (in.next(junk, line)) {
String[] temp=line.toString().split("\t");
key.set(Long.parseLong(temp[0]));
if(temp.length!=1) {
value.set(line.toString().substring(temp[0].length()+1));
} else {
value.set("");
}
return true;
} else {
return false;
}
}
}
@Override
public RecordReader<LongWritable, Text>
getRecordReader(InputSplit split,
JobConf job,
Reporter reporter) throws IOException {
return new TeraRecordReader(job, (FileSplit) split);
}
@Override
public InputSplit[] getSplits(JobConf conf, int splits) throws IOException {
if (conf == lastConf) {
return lastResult;
}
lastConf = conf;
lastResult = super.getSplits(conf, splits);
return lastResult;
}
}
2. TeraSort.java
package com.undirected.graph.sort;
import java.io.IOException;
import java.net.URI;
import java.util.ArrayList;
import java.util.List;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.Partitioner;
import org.apache.hadoop.mapred.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class TeraSort extends Configured implements Tool{
private static final Log LOG = LogFactory.getLog(TeraSort.class);
/**
* A partitioner that splits text keys into roughly equal partitions
* in a global sorted order.
*/
static class TotalOrderPartitioner implements Partitioner<LongWritable,Text>{
private LongWritable[] splitPoints;
/**
* Read the cut points from the given sequence file.
* @param fs the file system
* @param p the path to read
* @param job the job config
* @return the strings to split the partitions on
* @throws IOException
*/
private static LongWritable[] readPartitions(FileSystem fs, Path p,
JobConf job) throws IOException {
SequenceFile.Reader reader = new SequenceFile.Reader(fs, p, job);
List<LongWritable> parts = new ArrayList<LongWritable>();
LongWritable key = new LongWritable();
NullWritable value = NullWritable.get();
while (reader.next(key, value)) {
parts.add(key);
key = new LongWritable();
}
reader.close();
return parts.toArray(new LongWritable[parts.size()]);
}
@Override
public void configure(JobConf job) {
try {
FileSystem fs = FileSystem.getLocal(job);
Path partFile = new Path(TeraInputFormat.PARTITION_FILENAME);
splitPoints = readPartitions(fs, partFile, job);
} catch (IOException ie) {
throw new IllegalArgumentException("can't read paritions file", ie);
}
}
@Override
public int getPartition(LongWritable key, Text value, int numPartitions) {
if(key.get()<splitPoints[0].get()) {
return 0;
}
for(int i=0;i<splitPoints.length-1;i++) {
if(key.get()>=splitPoints[i].get() && key.get()<splitPoints[i+1].get()) {
return i+1;
}
}
return splitPoints.length;
}
}
@Override
public int run(String[] args) throws Exception {
LOG.info("starting");
JobConf job = (JobConf) getConf();
Path inputDir = new Path(args[0]);
inputDir = inputDir.makeQualified(inputDir.getFileSystem(job));
Path partitionFile = new Path(inputDir, TeraInputFormat.PARTITION_FILENAME);
URI partitionUri = new URI(partitionFile.toString() +
"#" + TeraInputFormat.PARTITION_FILENAME);
TeraInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setNumReduceTasks(Integer.parseInt(args[2]));
job.setJobName("TeraSort");
job.setJarByClass(TeraSort.class);
job.setOutputKeyClass(LongWritable.class);
job.setOutputValueClass(Text.class);
job.setInputFormat(TeraInputFormat.class);
job.setOutputFormat(TextOutputFormat.class);
job.setPartitionerClass(TotalOrderPartitioner.class);
TeraInputFormat.writePartitionFile(job, partitionFile);
DistributedCache.addCacheFile(partitionUri, job);
DistributedCache.createSymlink(job);
job.setInt("dfs.replication", 1);
JobClient.runJob(job);
LOG.info("done");
return 0;
}
/**
* @param args
*/
public static void main(String[] args) throws Exception {
if(args.length<3) {
System.out.println("Usage:<input> <output> <reduce number>");
System.exit(-1);
}
int res = ToolRunner.run(new JobConf(), new TeraSort(), args);
System.exit(res);
}
}
相關文章
- hadoop的terasort排序總結Hadoop排序
- Hadoop-MapReduce-TeraSort-大資料排序例子Hadoop大資料排序
- Hadoop TerasortHadoop
- Map按照key和value進行排序排序
- Python dict sort排序 按照key,valuePython排序
- Hadoop的TeraSort問題Hadoop
- Hadoop測試TeraSortHadoop
- mysql 字串型別的數值欄位按照數值的大小進行排序MySql字串型別排序
- Hadoop學習筆記之TeraSort修改後輸出翻倍異常Hadoop筆記
- go slice/map型別 排序(選擇排序演算法)Go型別排序演算法
- 如何證明INNODB輔助索引葉子結點KEY值相同的按照PRIMARY KEY排序索引排序
- 測試眼裡的Hadoop系列 之TerasortHadoop
- Hadoop TeraSort演算法之2-trie樹構造時間解惑Hadoop演算法
- Js實現Object按照值的某個欄位(數值型別)的大小進行排序JSObject型別排序
- Hadoop TeraSort 基準測試實驗Hadoop
- Hadoop學習筆記 - Sort / TeraSort / TestDFSIOHadoop筆記
- hadoop基準測試_Hadoop TeraSort基準測試Hadoop
- 按照價格排序!排序
- MySQL 按照指定的欄位排序MySql排序
- Sqoop splitkey支援的型別OOP型別
- 2. TeraSort在Hadoop分散式叢集中的執行Hadoop分散式
- Flutter Key的原理和使用(三) LocalKey的三種型別Flutter型別
- 修改表的欄位型別型別
- zabbix agent 型別所有key(19)型別
- 讓 排序 按照 in 列表的的顯示順序排序輸出。排序
- C# 泛型集合的自定義型別排序C#泛型型別排序
- CDM修改資料型別的方法資料型別
- oracle 修改欄位型別的方法Oracle型別
- 按照NSArray內部的某個物件排序物件排序
- dedecms標籤按照權重排序排序
- js 漢字按照拼音排序效果JS排序
- sort按照數值大小排序排序
- 氣泡排序和引用型別排序型別
- 修改欄位資料型別的方法資料型別
- Spark 與 Hadoop 關於 TeraGen/TeraSort 的對比實驗(包含原始碼)SparkHadoop原始碼
- thinkphp where in order 按照順序in的迴圈排序PHP排序
- PHP 字串陣列按照拼音排序的問題PHP字串陣列排序
- 快速掌握Java幾種排序演算法的區別與排序演算法的應用Java排序演算法