Java集合之ConcurrentHashMap原始碼淺析

GeneralAndroid發表於2017-11-25

上文中結尾處,我們說到了現在很少用Hashtable,那麼在需要執行緒安全的場景中,我們如何保持同步呢,這就是本文的重點:ConcurrentHashMap(JDK1.7)。ConcurrentHashMap比HashMap以及Hashtable複雜多了,其內部採用了鎖分段技術用以提高併發存取效率。我們看一下測試程式碼:

程式碼清單1:

import java.util.HashMap;
import java.util.Hashtable;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

public class CurrentHashMapTest {
    private static  ConcurrentHashMap<String,String> concurrentHashMap=new ConcurrentHashMap<>();
    private static Hashtable<String,String> hashtable=new Hashtable<>();
    private static HashMap<String,String> hashMap=new HashMap<>();

    public static void main(String[] args){


        testConcurrentHashMapThreadSafe();
        System.out.println(concurrentHashMap.size()+"last:"+concurrentHashMap.get("concurrentHashMap9999"));
        testHashtableThreadSafe();
        System.out.println(hashtable.size()+"last:"+hashtable.get("hashtable9999"));
        testHashMapThreadSafe();
        System.out.println(hashMap.size()+"last:"+hashMap.get("hashmap9999"));
        System.out.println("test end");
    }
    public static void  testConcurrentHashMapThreadSafe(){
        long startTime=System.currentTimeMillis();
        for (int i=0;i<100000;i++){
            new ConcurrentThread(i,"concurrentHashMap",concurrentHashMap).start();

        }
        long endTime=System.currentTimeMillis();
        System.out.println("ConcurrentHashMap take time:"+(endTime-startTime));

    }
    public static void testHashtableThreadSafe(){
        long startTime=System.currentTimeMillis();
        for (int i=0;i<100000;i++){
            new ConcurrentHashTableThread(i,"hashtable",hashtable).start();

        }
        long endTime=System.currentTimeMillis();
        System.out.println("Hashtable take time:"+(endTime-startTime));
    }
    public static void testHashMapThreadSafe(){System.out.println("enter test HashMap");
        long startTime=System.currentTimeMillis();
        for (int i=0;i<100000;i++){
            new ConcurrentHashMapThread(i,"hashmap",hashMap).start();

        }
        long endTime=System.currentTimeMillis();
        System.out.println(" HashMap take time:"+(endTime-startTime));
    }
}
class ConcurrentThread extends Thread{
    public int i;
    public String name;
    private ConcurrentHashMap<String,String> map;
    public ConcurrentThread(int i,String name,ConcurrentHashMap<String,String> map){

        this.i=i;
        this.name=name;
        this.map=map;
    }

    @Override
    public void run() {
        super.run();
        map.put(name+i,i+"");
    }
}
class ConcurrentHashTableThread extends Thread{
    public int i;
    public String name;
    private Hashtable<String,String> map;
    public ConcurrentHashTableThread(int i,String name,Hashtable<String,String> map){

        this.i=i;
        this.name=name;
        this.map=map;
    }

    @Override
    public void run() {
        super.run();
        map.put(name+i,i+"");
    }
}
class ConcurrentHashMapThread extends Thread{
    public int i;
    public String name;
    private HashMap<String,String>  map;
    public ConcurrentHashMapThread(int i,String name,HashMap<String,String> map){

        this.i=i;
        this.name=name;
        this.map=map;
    }

    @Override
    public void run() {
        super.run();
        map.put(name+i,i+"");
    }
}複製程式碼

上面的程式碼輸出結果(程式碼執行環境:Ubuntu14.04+idea+jdk1.7):
ConcurrentHashMap take time:3522
100000last:9999
Hashtable take time:3674
100000last:9999
enter test HashMap
HashMap take time:1105168
99945last:9999
test end

從程式碼輸出結果上可以看出ConcurrentHashMap的效率明顯要比Hashtable要高效,而HashMap是不安全的。
先說一下ConcurrentHashMap的內部結構,如下圖所示:

ConcurrentHashMap的資料結構
ConcurrentHashMap的資料結構

按照以前的風格,我們看下ConcurrentHashMap的建構函式,如程式碼清單2:

 static final int DEFAULT_INITIAL_CAPACITY = 16;//table陣列的預設長度,這個和HashMap是一樣的
    static final float DEFAULT_LOAD_FACTOR = 0.75f;//載入因子

    static final int DEFAULT_CONCURRENCY_LEVEL = 16;//併發級別


    static final int MAXIMUM_CAPACITY = 1 << 30;//最大容量,這裡可以看到DEFAULT_INITIAL_CAPACITY、DEFAULT_LOAD_FACTOR、MAXIMUM_CAPACITY,都是和HashMap相應欄位的值是相同的。


    static final int MIN_SEGMENT_TABLE_CAPACITY = 2;//段組的最小長度,這裡最小值為2的原因是,如果小於2的話(即為1),就沒有鎖分段的意義了,就和Hashtable一樣了,不能兩個執行緒同時併發存和取資料了。


    static final int MAX_SEGMENTS = 1 << 16; //段組的最大長度

    static final int RETRIES_BEFORE_LOCK = 2;//

    final int segmentMask;//地位掩碼

    final int segmentShift;//段偏移量

    final Segment<K,V>[] segments;//段組

    transient Set<K> keySet;
    transient Set<Map.Entry<K,V>> entrySet;
    transient Collection<V> values;
public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (concurrencyLevel > MAX_SEGMENTS)
            concurrencyLevel = MAX_SEGMENTS;
        // Find power-of-two sizes best matching arguments
        int sshift = 0;//左移次數
        int ssize = 1;//經過計算得到段組的長度
        while (ssize < concurrencyLevel) {//我們在閱讀原始碼時,碰到這類程式碼,我們可以假設輸入值,以便更好的理解程式碼的含義。
            ++sshift;
            ssize <<= 1;//sszie的值為2的sshift冪
        }
        this.segmentShift = 32 - sshift;//
        this.segmentMask = ssize - 1;//低位掩碼,sszie為2的指數,則segmentMask的低位全是1.
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        int c = initialCapacity / ssize;
        if (c * ssize < initialCapacity)
            ++c;
        int cap = MIN_SEGMENT_TABLE_CAPACITY;
        while (cap < c)//cap的值是2的指數,同時計算之後也是table陣列的容量。
            cap <<= 1;
        // create segments and segments[0]
        Segment<K,V> s0 =
            new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                             (HashEntry<K,V>[])new HashEntry[cap]);
        Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];//建立段組
        UNSAFE.putOrderedObject(ss, SBASE, s0); // 利用Unsafe將s0放在SBASE放入位置
        this.segments = ss;
    }


    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
    }


    public ConcurrentHashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
    }


    public ConcurrentHashMap() {
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
    }


    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                      DEFAULT_INITIAL_CAPACITY),
             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
        putAll(m);
    }複製程式碼

程式碼清單2中的34~41行,主要是為了計算segmentShift與segmentMask的值,下面舉個兩個計算過程的例子:

這裡寫圖片描述
這裡寫圖片描述

看了上面的兩組執行資料,我們可以知道segmentShift以及segmentMask的值是由concurrentLevel決定的,這幾個變數意義在程式碼註釋裡都有說明,這裡就不進行闡述了。

我們建立ConcurrentHashMap物件的目的就是為了使用,於是我們就來到了put方法這裡,如程式碼清單3

程式碼清單3

public V put(K key, V value) {
        Segment<K,V> s;
        if (value == null)
            throw new NullPointerException();//ConcurrentHashMap也不能接收null的鍵值對的,key和value都不能為Null
        int hash = hash(key);//計算雜湊值
        int j = (hash >>> segmentShift) & segmentMask;//計算段組的索引,(hash>>>segmentShift)保留雜湊值的高位將其結果與segmentMask與是為了求段組下標。
        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
             (segments, (j << SSHIFT) + SBASE)) == null) //取出(j<<SSHIFT)+SBASE記憶體偏移處的物件,如果為空,則建立。
            s = ensureSegment(j);
        return s.put(key, hash, value, false);//具體的put資料的操作由segment物件來完成。
    }
private int hash(Object k) {//這個hash函式的作用就是為了對key的hashcode的原始值進行再次處理,以減少碰撞。
        int h = hashSeed;

        if ((0 != h) && (k instanceof String)) {
            return sun.misc.Hashing.stringHash32((String) k);
        }

        h ^= k.hashCode();

        // Spread bits to regularize both segment and index locations,
        // using variant of single-word Wang/Jenkins hash.
        h += (h <<  15) ^ 0xffffcd7d;
        h ^= (h >>> 10);
        h += (h <<   3);
        h ^= (h >>>  6);
        h += (h <<   2) + (h << 14);
        return h ^ (h >>> 16);
    }
 private Segment<K,V> ensureSegment(int k) {
        final Segment<K,V>[] ss = this.segments;
        long u = (k << SSHIFT) + SBASE; //記憶體地址
        Segment<K,V> seg;
        if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {//如果記憶體偏移處沒有值,使用ss[0]元素為原型。
            Segment<K,V> proto = ss[0]; // use segment 0 as prototype
            int cap = proto.table.length;//複製容量
            float lf = proto.loadFactor;//複製載入因子
            int threshold = (int)(cap * lf);//閥值
            HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
            if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
                == null) { // 再次檢查是否為null
                Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);//建立Segment物件
                while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
                       == null) {//迴圈檢查u地址偏移處的物件是否為null
                    if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))//如果賦值成功則跳出迴圈,
                        break;
                }
            }
        }
        return seg;//最終返回此次建立的Segment物件或者u處的Segment物件。
    }
 // Unsafe mechanics
    private static final sun.misc.Unsafe UNSAFE;
    private static final long SBASE;
    private static final int SSHIFT;//有多少個1位
    private static final long TBASE;
    private static final int TSHIFT;//有多少個1位
    private static final long HASHSEED_OFFSET;
    private static final long SEGSHIFT_OFFSET;
    private static final long SEGMASK_OFFSET;
    private static final long SEGMENTS_OFFSET;

    static {
        int ss, ts;
        try {
            UNSAFE = sun.misc.Unsafe.getUnsafe();
            Class tc = HashEntry[].class;
            Class sc = Segment[].class;
            TBASE = UNSAFE.arrayBaseOffset(tc);//table組的物件頭的偏移量
            SBASE = UNSAFE.arrayBaseOffset(sc);//段組的物件頭的偏移量
            ts = UNSAFE.arrayIndexScale(tc);//單個HashEntry的大小,
            ss = UNSAFE.arrayIndexScale(sc);//單個Segment的大小
            HASHSEED_OFFSET = UNSAFE.objectFieldOffset(
                ConcurrentHashMap.class.getDeclaredField("hashSeed"));//hashSeed的記憶體地址
            SEGSHIFT_OFFSET = UNSAFE.objectFieldOffset(
                ConcurrentHashMap.class.getDeclaredField("segmentShift"));//segmentShift的記憶體地址
            SEGMASK_OFFSET = UNSAFE.objectFieldOffset(
                ConcurrentHashMap.class.getDeclaredField("segmentMask"));//segmentMask的記憶體地址
            SEGMENTS_OFFSET = UNSAFE.objectFieldOffset(
                ConcurrentHashMap.class.getDeclaredField("segments"));//segment的起始地址
        } catch (Exception e) {
            throw new Error(e);
        }
        if ((ss & (ss-1)) != 0 || (ts & (ts-1)) != 0)//這裡可以看到對於ss以及ts的要求也是2的指數值。
            throw new Error("data type scale not a power of two");
        SSHIFT = 31 - Integer.numberOfLeadingZeros(ss);//numberOfLeadingZeros是代表一個int型的二進位制值代表數值的最高位為1的之前有多少個0位。也就是說SSHIFT與TSHIFT代表資料的有效資訊佔用多少位。
        TSHIFT = 31 - Integer.numberOfLeadingZeros(ts);
    }複製程式碼

通過程式碼清單3我們知道了ConcurrentHashMap的put操作是由Segment來完成的,下面我們繼續往下挖,看程式碼清單4

程式碼清單4

static final class Segment<K,V> extends ReentrantLock implements Serializable {//繼承ReetrantLock可重入鎖


        private static final long serialVersionUID = 2249069246763182397L;


        static final int MAX_SCAN_RETRIES =
            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;

        transient volatile HashEntry<K,V>[] table;//表組

        transient int count;//表的長度

        transient int modCount;//修改次數

        transient int threshold;//閥值


        final float loadFactor;//負載因子

        Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
            this.loadFactor = lf;
            this.threshold = threshold;
            this.table = tab;
        }

        final V put(K key, int hash, V value, boolean onlyIfAbsent) {//put操作
            HashEntry<K,V> node = tryLock() ? null :
                scanAndLockForPut(key, hash, value);//保證能夠獲取到段鎖,只有key不在該段內,node才不為null,其餘情況node為null
            V oldValue;
            try {
                HashEntry<K,V>[] tab = table;
                int index = (tab.length - 1) & hash;//計算table陣列的索引
                HashEntry<K,V> first = entryAt(tab, index);
                for (HashEntry<K,V> e = first;;) {
                    if (e != null) {//迴圈遍歷連結串列,如果沒有找到e=null然後跳轉至else的分支程式碼中。
                        K k;
                        if ((k = e.key) == key ||
                            (e.hash == hash && key.equals(k))) {
                            oldValue = e.value;
                            if (!onlyIfAbsent) {
                                e.value = value;
                                ++modCount;
                            }
                            break;
                        }
                        e = e.next;
                    }
                    else {
                        if (node != null)
                            node.setNext(first);//頭插法
                        else
                            node = new HashEntry<K,V>(hash, key, value, first);//頭插法
                        int c = count + 1;
                        if (c > threshold && tab.length < MAXIMUM_CAPACITY)//擴容處理
                            rehash(node);
                        else
                            setEntryAt(tab, index, node);
                        ++modCount;
                        count = c;
                        oldValue = null;
                        break;
                    }
                }
            } finally {
                unlock();
            }
            return oldValue;
        }


        @SuppressWarnings("unchecked")
        private void rehash(HashEntry<K,V> node) {//這個函式的理解還是不容易的。
            HashEntry<K,V>[] oldTable = table;
            int oldCapacity = oldTable.length;
            int newCapacity = oldCapacity << 1;//擴容方式為old*2.
            threshold = (int)(newCapacity * loadFactor);//新的閥值
            HashEntry<K,V>[] newTable =
                (HashEntry<K,V>[]) new HashEntry[newCapacity];
            int sizeMask = newCapacity - 1;
            for (int i = 0; i < oldCapacity ; i++) {
                HashEntry<K,V> e = oldTable[i];//遍歷table陣列,進而遍歷單連結串列
                if (e != null) {
                    HashEntry<K,V> next = e.next;
                    int idx = e.hash & sizeMask;
                    if (next == null)   //  Single node on list
                        newTable[idx] = e;
                    else { // Reuse consecutive sequence at same slot
                        HashEntry<K,V> lastRun = e;
                        int lastIdx = idx;
                        for (HashEntry<K,V> last = next;last != null;last = last.next) {//遍歷單連結串列
                            int k = last.hash & sizeMask;
                            if (k != lastIdx) {
                                lastIdx = k;
                                lastRun = last;
                            }
                        }
                        newTable[lastIdx] = lastRun;
                        // Clone remaining nodes
                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
                            V v = p.value;
                            int h = p.hash;
                            int k = h & sizeMask;
                            HashEntry<K,V> n = newTable[k];
                            newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
                        }
                    }
                }
            }
            int nodeIndex = node.hash & sizeMask; // add the new node
            node.setNext(newTable[nodeIndex]);
            newTable[nodeIndex] = node;
            table = newTable;
        }

        private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
            HashEntry<K,V> first = entryForHash(this, hash);//根據hash值找到table的陣列元素
            HashEntry<K,V> e = first;
            HashEntry<K,V> node = null;
            int retries = -1; // 用來定位節點,如果為0則定位到包含key的節點
            while (!tryLock()) {//迴圈檢測鎖,如果當前執行緒已經獲取到鎖,則跳出迴圈。
                HashEntry<K,V> f; // to recheck first below
                if (retries < 0) {//檢索key的節點
                    if (e == null) {
                        if (node == null) // speculatively create node
                            node = new HashEntry<K,V>(hash, key, value, null);
                        retries = 0;
                    }
                    else if (key.equals(e.key))
                        retries = 0;
                    else
                        e = e.next;
                }
                else if (++retries > MAX_SCAN_RETRIES) {
                    lock();
                    break;
                }
                else if ((retries & 1) == 0 &&
                         (f = entryForHash(this, hash)) != first) {
                    e = first = f; // re-traverse if entry changed
                    retries = -1;
                }
            }
            return node;
        }

        private void scanAndLock(Object key, int hash) {
            // similar to but simpler than scanAndLockForPut
            HashEntry<K,V> first = entryForHash(this, hash);
            HashEntry<K,V> e = first;
            int retries = -1;
            while (!tryLock()) {
                HashEntry<K,V> f;
                if (retries < 0) {
                    if (e == null || key.equals(e.key))
                        retries = 0;
                    else
                        e = e.next;
                }
                else if (++retries > MAX_SCAN_RETRIES) {
                    lock();
                    break;
                }
                else if ((retries & 1) == 0 &&
                         (f = entryForHash(this, hash)) != first) {
                    e = first = f;
                    retries = -1;
                }
            }
        }

        final V remove(Object key, int hash, Object value) {
            if (!tryLock())
                scanAndLock(key, hash);
            V oldValue = null;
            try {
                HashEntry<K,V>[] tab = table;
                int index = (tab.length - 1) & hash;
                HashEntry<K,V> e = entryAt(tab, index);
                HashEntry<K,V> pred = null;
                while (e != null) {
                    K k;
                    HashEntry<K,V> next = e.next;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        V v = e.value;
                        if (value == null || value == v || value.equals(v)) {
                            if (pred == null)
                                setEntryAt(tab, index, next);
                            else
                                pred.setNext(next);
                            ++modCount;
                            --count;
                            oldValue = v;
                        }
                        break;
                    }
                    pred = e;
                    e = next;
                }
            } finally {
                unlock();
            }
            return oldValue;
        }

        final boolean replace(K key, int hash, V oldValue, V newValue) {
            if (!tryLock())
                scanAndLock(key, hash);
            boolean replaced = false;
            try {
                HashEntry<K,V> e;
                for (e = entryForHash(this, hash); e != null; e = e.next) {
                    K k;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        if (oldValue.equals(e.value)) {
                            e.value = newValue;
                            ++modCount;
                            replaced = true;
                        }
                        break;
                    }
                }
            } finally {
                unlock();
            }
            return replaced;
        }

        final V replace(K key, int hash, V value) {
            if (!tryLock())
                scanAndLock(key, hash);
            V oldValue = null;
            try {
                HashEntry<K,V> e;
                for (e = entryForHash(this, hash); e != null; e = e.next) {
                    K k;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        oldValue = e.value;
                        e.value = value;
                        ++modCount;
                        break;
                    }
                }
            } finally {
                unlock();
            }
            return oldValue;
        }

        final void clear() {
            lock();
            try {
                HashEntry<K,V>[] tab = table;
                for (int i = 0; i < tab.length ; i++)
                    setEntryAt(tab, i, null);
                ++modCount;
                count = 0;
            } finally {
                unlock();
            }
        }
    }複製程式碼

上面的程式碼清單4其實就是Segment類的程式碼,之前我們說過ConcurrentHashMap的put操作是由Segment的put來執行的。細心的讀者可以看到Segment繼承了ReentrantLock,也就是其內部是可以直接使用lock與unlock來進行同步操作的。從程式碼中我們可以看到其put操作是執行緒安全的,而且Segment的其他成員函式也是執行緒安全的。這裡如果認真看了程式碼清單2,3,4的同學會發現segments陣列的長度取決於建構函式指定的concurrencyLevel的值,在儲存資料時並不會擴容segments的陣列長度,在進行儲存資料時,擴容的是segment的成員變數table陣列的長度。

儲存資料的姿勢搞清楚之後,我們就看看怎麼取我們的資料,請看程式碼清單5:
程式碼清單5

public V get(Object key) {
        Segment<K,V> s; // manually integrate access methods to reduce overhead
        HashEntry<K,V>[] tab;
        int h = hash(key);
        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;//計算索引
        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
            (tab = s.table) != null) {//通過CAS獲索引處Segment物件,並進一步獲得table的引用
            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);//找到table索引處的單連結串列,並迴圈遍歷
                 e != null; e = e.next) {
                K k;
                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                    return e.value;
            }
        }
        return null;
    }複製程式碼

程式碼清單5沒有什麼可以過多的說的,就是定位索引,遍歷單連結串列,找到返回對應值,否則返回null.如果大家明白了put的過程,get操作是很好理解的。

接下來我們看下ConcurrentHashMap是怎麼統計目前包含多少鍵值對的,請看程式碼清單6:
程式碼清單6

public int size() {
        // Try a few times to get accurate count. On failure due to
        // continuous async changes in table, resort to locking.
        final Segment<K,V>[] segments = this.segments;
        int size;
        boolean overflow; // 是否溢位
        long sum;         // 修改次數
        long last = 0L;   // 上遍歷時的修改次數
        int retries = -1; 
        try {
            for (;;) {
                if (retries++ == RETRIES_BEFORE_LOCK) {// 這裡注意只有可重鎖的次數大於最大值時,才會對segments陣列元素依次上鎖
                    for (int j = 0; j < segments.length; ++j)
                        ensureSegment(j).lock(); // force creation
                }
                sum = 0L;
                size = 0;
                overflow = false;
                for (int j = 0; j < segments.length; ++j) {
                    Segment<K,V> seg = segmentAt(segments, j);
                    if (seg != null) {
                        sum += seg.modCount;
                        int c = seg.count;
                        if (c < 0 || (size += c) < 0)//如果相加為負數,則說明已經超過最大值,溢位,即overflow為true
                            overflow = true;
                    }
                }
                if (sum == last)//如果為true則代表,沒有在累積鍵值對時,沒有其他執行緒改變資料結構,則退出迴圈。
                    break;
                last = sum;
            }
        } finally {
            if (retries > RETRIES_BEFORE_LOCK) {//解鎖
                for (int j = 0; j < segments.length; ++j)
                    segmentAt(segments, j).unlock();
            }
        }
        return overflow ? Integer.MAX_VALUE : size;
    }複製程式碼

上面的size函式首先不加鎖迴圈執行以下操作:遍歷segments陣列元素,獲得count和modCount的值並相加。如果連續兩次所有的modcount相加結果相等,即last==sum,則過程中沒有發生其他執行緒修改ConcurrentHashMap的情況,返回獲得的值。當迴圈次數超過可重入最大值時,這時需要對所有的段組元素進行加鎖,獲取返回值後再依次解鎖。值得注意的是,加鎖過程中要強制建立所有的Segment,否則容易出現其他執行緒建立Segment並進行put,remove等操作。

要說的內容就這麼多,如果文中有不對的地方,麻煩指出,如果喜歡我的文章,可以動動手指關注一下,贊一下,我會有更大的動力寫出更多的文章,轉載請註明出處:blog.csdn.net/android_jia…

相關文章