ABAQUS材料子程式學習(線性隨動硬化塑性)
ABAQUS材料子程式學習(線性隨動硬化塑性)
前言
繼續塑性本構,隨動硬化塑性。
記錄自己學習abaqus軟體umat子程式的t過程,本文主要參考了《非線性本構關係在ABAQUS中的實現》第四章和技術鄰的視訊課程“非線性各向同性強化彈塑性umat子程式教程”
塑性力學增量形式實現
計算過程中,體應變和體應力是彈性關係 Δ σ v = K ⋅ Δ ε v (1) {Δσ_v}={K}\cdot{Δε_v}\tag{1} Δσv=K⋅Δεv(1)
K K K為體積模量, K = E 3 ( 1 − ν ) K=\cfrac{E}{3(1-ν)} K=3(1−ν)E , Δ ε v = Δ ε 11 + Δ ε 22 + Δ ε 33 Δε_v=Δε_{11}+Δε_{22}+Δε_{33} Δεv=Δε11+Δε22+Δε33
所以在下面的討論中只考慮偏應力張量和偏應力張量
試應力: σ t r ′ ( t ) = σ ′ ( t ) + C ′ : Δ ε ′ (2) \bm{σ^{tr'}(t)=σ'(t)+\mathbb{C'}:Δε'}\tag{2} σtr′(t)=σ′(t)+C′:Δε′(2)
線性隨動硬化塑性的屈服函式: f = [ 3 2 ( σ ′ − α ′ ) : ( σ ′ − α ′ ) ] 1 2 − σ y = σ ^ M i s e s − σ y (3) f=\left[\frac{3}{2}\bm{(σ'-α'):(σ'-α')} \right]^{\frac{1}{2}}-σ_y={\widehat{σ}_{Mises}}-σ_y\tag{3} f=[23(σ′−α′):(σ′−α′)]21−σy=σ Mises−σy(3)
其中, α ′ \bm{α'} α′為背應力,三維問題6個分量; σ y σ_y σy初始屈服強度, σ ^ M i s e s {\widehat{σ}_{Mises}} σ Mises 有效應力的Mises等效應力。
線性隨動硬化模型:Mises等效背應力與等效塑性增量成正比
Δ
α
M
i
s
e
s
=
c
Δ
ε
ˉ
p
Δ
α
=
2
3
c
Δ
ε
p
(4)
Δα_{Mises}=cΔ\bar{ε}^p\\ \quad\\\tag{4} \bm{Δα}=\frac{2}{3}cΔ\bm{ε^p}
ΔαMises=cΔεˉpΔα=32cΔεp(4)
c
c
c隨動硬化係數。
α
′
\bm{α'}
α′背應力作為狀態變數存在STATEV(NSTATV)
中,提取
α
′
\bm{α'}
α′背應力並計算試應力的有效屈服應力
σ
M
i
s
e
s
t
r
{σ_{Mises}^{tr}}
σMisestr
判斷 σ M i s e s t r {σ}_{Mises}^{tr} σMisestr 與 σ y {σ_y} σy 關係:
若 σ M i s e s t r < σ y {σ}_{Mises}^{tr}<{σ_y} σMisestr<σy : σ ( t + Δ t ) = σ t r ( t ) \bm{σ(t+Δt)}=\bm{σ^{tr}(t)} σ(t+Δt)=σtr(t)
一致切線剛度矩陣,為彈性剛度矩陣
D
D
S
D
D
E
(
i
,
j
)
=
[
2
G
+
λ
λ
λ
0
0
0
λ
2
G
+
λ
λ
0
0
0
λ
λ
2
G
+
λ
0
0
0
0
0
0
G
0
0
0
0
0
0
G
0
0
0
0
0
0
G
]
(5)
\bm{DDSDDE}(i,j) =\left [\begin{matrix} 2G+λ&λ&λ&0&0&0 \\ λ&2G+λ&λ&0&0&0 \\ λ&λ& 2G+λ&0&0&0 \\ 0&0&0& G&0&0 \\ 0&0&0&0& G&0 \\ 0&0&0&0&0 &G \end{matrix} \right ]\tag{5}
DDSDDE(i,j)=⎣⎢⎢⎢⎢⎢⎢⎡2G+λλλ000λ2G+λλ000λλ2G+λ000000G000000G000000G⎦⎥⎥⎥⎥⎥⎥⎤(5)
若
σ
M
i
s
e
s
t
r
≥
σ
y
{σ}_{Mises}^{tr}≥{σ_y}
σMisestr≥σy ,計算新增的
Δ
ε
ˉ
p
Δ\bar{ε}^p
Δεˉp
Δ
ε
ˉ
p
=
σ
M
i
s
e
s
t
r
−
σ
y
(
c
+
3
G
)
Δ\bar{ε}^p=\frac{{σ}_{Mises}^{tr}-σ_{y}}{(c+3G)}
Δεˉp=(c+3G)σMisestr−σy
根據正交流動法則:
Δ
ε
p
=
Δ
ε
ˉ
p
3
2
σ
^
′
σ
^
M
i
s
e
s
=
Δ
ε
ˉ
p
3
2
σ
^
t
r
′
σ
^
M
i
s
e
s
t
r
\bm{Δε^p}=Δ\bar{ε}^p\frac{3}{2}\frac{\bm{\widehatσ'}}{\widehatσ_{Mises}}=Δ\bar{ε}^p\frac{3}{2}\frac{\bm{\widehatσ^{tr'}}}{\widehatσ_{Mises}^{tr}}
Δεp=Δεˉp23σ
Misesσ
′=Δεˉp23σ
Misestrσ
tr′
代入(4)更新背應力,STATEV(1)
……STATEV(NTENS)
應力增量=彈性剛度矩陣×彈性應變增量
Δ
σ
=
D
e
:
Δ
ε
e
\bm{Δσ=D_e:Δε^e}
Δσ=De:Δεe
彈性應變=總應變-塑性應變增量
Δ
σ
=
D
e
:
(
Δ
ε
−
Δ
ε
p
)
(6)
\bm{Δσ=D_e:(Δε-Δε^p)}\tag{6}
Δσ=De:(Δε−Δεp)(6)
屈服後一致切線剛度矩陣:
將
d
ε
p
\bm{dε^p}
dεp 用
d
ε
\bm{dε}
dε 表示出來,再代回式(6)就可求出屈服後的DDSDDE(NTENS,NTENS)
一致性條件
{
f
(
σ
′
,
α
)
=
0
f
(
σ
′
+
d
σ
′
,
α
+
d
α
)
=
0
⟹
∂
f
∂
σ
′
d
σ
′
+
∂
f
∂
α
d
α
=
0
(7)
\begin{cases} f(\bm{σ'},\bm{α})=0 \\ f(\bm{σ'}+d\bm{σ'},\bm{α}+d\bm{α})=0 \end{cases} \implies \frac{\partial f}{\partial \bm{σ'}} \bm{dσ'}+\frac{\partial f}{\partial \bm{\alpha}} \bm{d\alpha}=0\tag{7}
{f(σ′,α)=0f(σ′+dσ′,α+dα)=0⟹∂σ′∂fdσ′+∂α∂fdα=0(7)
其中:
{
∂
f
∂
σ
′
=
∂
[
3
2
(
σ
′
−
α
)
:
(
σ
′
−
α
)
]
1
2
∂
σ
′
=
6
σ
^
M
i
s
e
s
(
σ
′
−
α
)
∂
f
∂
α
=
−
∂
f
∂
σ
′
(8)
\begin{cases} \Large{\frac{\partial f}{\partial \bm{σ'}}}=\frac{\partial \left[\frac{3}{2}\bm{(σ'-α):(σ'-α)} \right]^{\frac{1}{2}}}{\partial \bm{σ'}}=\frac{6}{{\widehat{σ}_{Mises}}}\bm{(σ'-α)} \\\tag{8} \quad\\ \Large \frac{\partial f}{\partial \bm{α}}= -\frac{\partial f}{\partial \bm{σ'}} \end{cases}
⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧∂σ′∂f=∂σ′∂[23(σ′−α):(σ′−α)]21=σ
Mises6(σ′−α)∂α∂f=−∂σ′∂f(8)
(4)、(6)和(8)代入(7):
∂
f
∂
σ
′
d
σ
′
=
c
∂
f
∂
σ
′
d
ε
p
d
σ
′
=
c
d
ε
p
D
e
′
:
(
d
ε
′
−
d
ε
p
)
=
c
d
ε
p
D
e
′
⋅
d
ε
′
=
c
I
:
d
ε
p
+
D
e
′
:
d
ε
p
D
e
′
:
d
ε
′
=
(
c
I
+
D
e
′
)
:
d
ε
p
D
e
′
:
(
I
−
1
3
I
^
)
:
d
ε
=
(
c
I
+
D
e
)
:
d
ε
p
(9)
\begin{aligned} &\frac{\partial f}{\partial \bm{σ'}}\bm{dσ'}=c\frac{\partial f}{\partial \bm{σ'}} \bm{dε^p}\\ \quad\\ & \bm{dσ'}=c \bm{dε^p}\\ \quad\\ & \bm{D'_e:(dε'-dε^p)}=c \bm{dε^p}\\ \quad\\ & \bm{D'_e\cdot dε'}=c \bm{I : dε^p}+ \bm{D'_e: dε^p}\\ \quad\\ & \bm{D'_e: dε'}=(c \bm{I}+ \bm{D'_e}):\bm{dε^p}\\ \quad\\ & \bm{D'_e}: \bm{(I}-\frac{1}{3}\bm{\hat{I})}: \bm{dε}=(c \bm{I}+ \bm{D_e}): \bm{dε^p} \end{aligned}\tag{9}
∂σ′∂fdσ′=c∂σ′∂fdεpdσ′=cdεpDe′:(dε′−dεp)=cdεpDe′⋅dε′=cI:dεp+De′:dεpDe′:dε′=(cI+De′):dεpDe′:(I−31I^):dε=(cI+De):dεp(9)
其中:
I
=
δ
i
k
δ
j
l
e
⃗
i
e
⃗
j
e
⃗
k
e
⃗
l
\bm{I}=\delta_{ik}\delta_{jl}\bm{\vec e_i \vec e_j \vec e_k \vec e_l}
I=δikδjleiejekel 四階單位張量,
I
^
=
δ
i
j
δ
k
l
e
⃗
i
e
⃗
j
e
⃗
k
e
⃗
l
\bm{\hat{I}}=\delta_{ij}\delta_{kl}\bm{\vec e_i \vec e_j \vec e_k \vec e_l}
I^=δijδkleiejekel
(注:
I
:
A
=
δ
i
k
δ
j
l
e
⃗
i
e
⃗
j
e
⃗
k
e
⃗
l
:
A
n
m
e
⃗
n
e
⃗
m
=
δ
i
k
δ
j
l
δ
k
n
δ
l
m
A
n
m
e
⃗
i
e
⃗
j
=
δ
i
k
δ
j
l
A
k
l
e
⃗
i
e
⃗
j
=
A
i
j
e
⃗
i
e
⃗
j
\bm{I:A}=\delta_{ik}\delta_{jl}\bm{\vec e_i \vec e_j \vec e_k \vec e_l}:A_{nm}\bm{\vec e_n \vec e_m }=\delta_{ik}\delta_{jl}\delta_{kn}\delta_{lm}A_{nm}\bm{\vec e_i \vec e_j }=\delta_{ik}\delta_{jl}A_{kl}\bm{\vec e_i \vec e_j }=A_{ij}\bm{\vec e_i \vec e_j }
I:A=δikδjleiejekel:Anmenem=δikδjlδknδlmAnmeiej=δikδjlAkleiej=Aijeiej)
(注:
I
^
:
A
=
δ
i
j
δ
k
l
e
⃗
i
e
⃗
j
e
⃗
k
e
⃗
l
:
A
n
m
e
⃗
n
e
⃗
m
=
δ
i
j
δ
k
l
δ
k
n
δ
l
m
A
n
m
e
⃗
i
e
⃗
j
=
δ
i
j
A
k
k
e
⃗
i
e
⃗
j
\bm{\hat{I}:A}=\delta_{ij}\delta_{kl}\bm{\vec e_i \vec e_j \vec e_k \vec e_l}:A_{nm}\bm{\vec e_n \vec e_m }=\delta_{ij}\delta_{kl}\delta_{kn}\delta_{lm}A_{nm}\bm{\vec e_i \vec e_j }=\delta_{ij}A_{kk}\bm{\vec e_i \vec e_j }
I^:A=δijδkleiejekel:Anmenem=δijδklδknδlmAnmeiej=δijAkkeiej)
再代入(6):
d
σ
′
=
{
D
e
′
−
D
e
′
:
(
c
I
+
D
e
′
)
−
1
:
D
e
′
}
:
(
I
−
1
3
I
^
)
:
d
ε
d
σ
V
=
K
I
^
:
d
ε
(10)
\begin{aligned} \bm{dσ'}&=\left\{\bm{D'_e}-\bm{D'_e}:(c \bm{I}+ \bm{D'_e})^{-1}:\bm{D'_e} \right\}: \bm{(I}-\frac{1}{3}\bm{\hat{I})}:\bm{dε}\\ \bm{dσ_V}&=K\bm{\hat{I}}:\bm{dε}\tag{10} \end{aligned}
dσ′dσV={De′−De′:(cI+De′)−1:De′}:(I−31I^):dε=KI^:dε(10)
因此:
d
σ
=
{
[
D
e
′
−
D
e
′
:
(
c
I
+
D
e
′
)
−
1
:
D
e
′
]
:
(
I
−
1
3
I
^
)
+
K
I
^
}
:
d
ε
(11)
\bm{dσ}=\left\{\left[\bm{D'_e}-\bm{D'_e}:(c \bm{I}+ \bm{D'_e})^{-1}:\bm{D'_e} \right]: \bm{(I}-\frac{1}{3}\bm{\hat{I})}+K\bm{\hat{I}}\right\}:\bm{dε}\tag{11}
dσ={[De′−De′:(cI+De′)−1:De′]:(I−31I^)+KI^}:dε(11)
推導過程保持張量計法
A
=
[
A
11
,
11
A
11
,
22
A
11
,
33
A
11
,
12
A
11
,
23
A
11
,
13
A
11
,
21
A
11
,
32
A
11
,
31
A
22
,
11
A
22
,
22
A
22
,
33
A
22
,
12
A
22
,
23
A
22
,
13
A
22
,
21
A
22
,
32
A
22
,
31
A
33
,
11
A
33
,
22
A
33
,
33
A
33
,
12
A
33
,
23
A
33
,
13
A
33
,
21
A
33
,
32
A
33
,
31
A
12
,
11
A
12
,
22
A
12
,
33
A
12
,
12
A
12
,
23
A
12
,
13
A
12
,
21
A
12
,
32
A
12
,
31
A
23
,
11
A
23
,
22
A
23
,
33
A
23
,
12
A
23
,
23
A
23
,
13
A
23
,
21
A
23
,
32
A
23
,
31
A
13
,
11
A
13
,
22
A
13
,
33
A
13
,
12
A
13
,
23
A
13
,
13
A
13
,
21
A
13
,
32
A
13
,
31
A
21
,
11
A
21
,
22
A
21
,
33
A
21
,
12
A
21
,
23
A
21
,
13
A
21
,
21
A
21
,
32
A
21
,
31
A
32
,
11
A
32
,
22
A
32
,
33
A
32
,
12
A
32
,
23
A
32
,
13
A
32
,
21
A
32
,
32
A
32
,
31
A
31
,
11
A
31
,
22
A
31
,
33
A
31
,
12
A
31
,
23
A
31
,
13
A
31
,
21
A
31
,
32
A
31
,
31
]
\bm{A}=\left[\begin{array}{ccc:ccc:ccc} A_{11,11}&A_{11,22}&A_{11,33}&A_{11,12}&A_{11,23}&A_{11,13}&A_{11,21}&A_{11,32}&A_{11,31}\\ A_{22,11}&A_{22,22}&A_{22,33}&A_{22,12}&A_{22,23}&A_{22,13}&A_{22,21}&A_{22,32}&A_{22,31}\\ A_{33,11}&A_{33,22}&A_{33,33}&A_{33,12}&A_{33,23}&A_{33,13}&A_{33,21}&A_{33,32}&A_{33,31}\\\hdashline A_{12,11}&A_{12,22}&A_{12,33}&A_{12,12}&A_{12,23}&A_{12,13}&A_{12,21}&A_{12,32}&A_{12,31}\\ A_{23,11}&A_{23,22}&A_{23,33}&A_{23,12}&A_{23,23}&A_{23,13}&A_{23,21}&A_{23,32}&A_{23,31}\\ A_{13,11}&A_{13,22}&A_{13,33}&A_{13,12}&A_{13,23}&A_{13,13}&A_{13,21}&A_{13,32}&A_{13,31}\\\hdashline A_{21,11}&A_{21,22}&A_{21,33}&A_{21,12}&A_{21,23}&A_{21,13}&A_{21,21}&A_{21,32}&A_{21,31}\\ A_{32,11}&A_{32,22}&A_{32,33}&A_{32,12}&A_{32,23}&A_{32,13}&A_{32,21}&A_{32,32}&A_{32,31}\\ A_{31,11}&A_{31,22}&A_{31,33}&A_{31,12}&A_{31,23}&A_{31,13}&A_{31,21}&A_{31,32}&A_{31,31}\\ \end{array}\right]
A=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡A11,11A22,11A33,11A12,11A23,11A13,11A21,11A32,11A31,11A11,22A22,22A33,22A12,22A23,22A13,22A21,22A32,22A31,22A11,33A22,33A33,33A12,33A23,33A13,33A21,33A32,33A31,33A11,12A22,12A33,12A12,12A23,12A13,12A21,12A32,12A31,12A11,23A22,23A33,23A12,23A23,23A13,23A21,23A32,23A31,23A11,13A22,13A33,13A12,13A23,13A13,13A21,13A32,13A31,13A11,21A22,21A33,21A12,21A23,21A13,21A21,21A32,21A31,21A11,32A22,32A33,32A12,32A23,32A13,32A21,32A32,32A31,32A11,31A22,31A33,31A12,31A23,31A13,31A21,31A32,31A31,31⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤
D
e
′
=
[
2
G
0
0
0
0
0
0
0
0
0
2
G
0
0
0
0
0
0
0
0
0
2
G
0
0
0
0
0
0
0
0
0
G
0
0
G
0
0
0
0
0
0
G
0
0
G
0
0
0
0
0
0
G
0
0
G
0
0
0
G
0
0
G
0
0
0
0
0
0
G
0
0
G
0
0
0
0
0
0
G
0
0
G
]
\bm{D'_e}=\left[\begin{array}{ccc:ccc:ccc} 2G &0&0&0&0&0&0&0&0\\ 0&2G&0&0&0&0&0&0&0\\ 0&0&2G&0&0&0&0&0&0\\\hdashline 0 &0&0&G&0&0&G&0&0\\ 0&0&0&0&G&0&0&G&0\\ 0&0&0&0&0&G&0&0&G\\\hdashline 0 &0&0&G&0&0&G&0&0\\ 0&0&0&0&G&0&0&G&0\\ 0&0&0&0&0&G&0&0&G\\ \end{array}\right]
De′=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡2G0000000002G0000000002G000000000G00G000000G00G000000G00G000G00G000000G00G000000G00G⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤
D
e
′
+
c
I
=
[
2
G
+
c
0
0
0
0
0
0
0
0
0
2
G
+
c
0
0
0
0
0
0
0
0
0
2
G
+
c
0
0
0
0
0
0
0
0
0
G
+
c
0
0
G
0
0
0
0
0
0
G
+
c
0
0
G
0
0
0
0
0
0
G
+
c
0
0
G
0
0
0
G
0
0
G
+
c
0
0
0
0
0
0
G
0
0
G
+
c
0
0
0
0
0
0
G
0
0
G
+
c
]
\bm{D'_e+cI}=\left[\begin{array}{ccc:ccc:ccc} 2G+c &0&0&0&0&0&0&0&0\\ 0&2G+c&0&0&0&0&0&0&0\\ 0&0&2G+c&0&0&0&0&0&0\\\hdashline 0 &0&0&G+c&0&0&G&0&0\\ 0&0&0&0&G+c&0&0&G&0\\ 0&0&0&0&0&G+c&0&0&G\\\hdashline 0 &0&0&G&0&0&G+c&0&0\\ 0&0&0&0&G&0&0&G+c&0\\ 0&0&0&0&0&G&0&0&G+c\\ \end{array}\right]
De′+cI=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡2G+c0000000002G+c0000000002G+c000000000G+c00G000000G+c00G000000G+c00G000G00G+c000000G00G+c000000G00G+c⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤
[
D
e
′
+
c
I
]
−
1
=
[
1
2
G
+
c
0
0
0
0
0
0
0
0
0
1
2
G
+
c
0
0
0
0
0
0
0
0
0
1
2
G
+
c
0
0
0
0
0
0
0
0
0
G
+
c
(
2
G
+
c
)
c
0
0
−
G
(
2
G
+
c
)
c
0
0
0
0
0
0
G
+
c
(
2
G
+
c
)
c
0
0
−
G
(
2
G
+
c
)
c
0
0
0
0
0
0
G
+
c
(
2
G
+
c
)
c
0
0
−
G
(
2
G
+
c
)
c
0
0
0
−
G
(
2
G
+
c
)
c
0
0
G
+
c
(
2
G
+
c
)
c
0
0
0
0
0
0
−
G
(
2
G
+
c
)
c
0
0
G
+
c
(
2
G
+
c
)
c
0
0
0
0
0
0
−
G
(
2
G
+
c
)
c
0
0
G
+
c
(
2
G
+
c
)
c
]
\left[\bm{D'_e+cI} \right]^{-1}=\left[\begin{array}{ccc:ccc:ccc} \frac{1}{2G+c} &0&0&0&0&0&0&0&0\\ 0&\frac{1}{2G+c} &0&0&0&0&0&0&0\\ 0&0&\frac{1}{2G+c} &0&0&0&0&0&0\\\hdashline 0 &0&0&\frac{G+c}{(2G+c)c} &0&0&\frac{-G}{(2G+c)c}&0&0\\ 0&0&0&0&\frac{G+c}{(2G+c)c}&0&0&\frac{-G}{(2G+c)c}&0\\ 0&0&0&0&0&\frac{G+c}{(2G+c)c}&0&0&\frac{-G}{(2G+c)c}\\\hdashline 0 &0&0&\frac{-G}{(2G+c)c}&0&0&\frac{G+c}{(2G+c)c}&0&0\\ 0&0&0&0&\frac{-G}{(2G+c)c}&0&0&\frac{G+c}{(2G+c)c}&0\\ 0&0&0&0&0&\frac{-G}{(2G+c)c}&0&0&\frac{G+c}{(2G+c)c}\\ \end{array}\right]
[De′+cI]−1=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡2G+c10000000002G+c10000000002G+c1000000000(2G+c)cG+c00(2G+c)c−G000000(2G+c)cG+c00(2G+c)c−G000000(2G+c)cG+c00(2G+c)c−G000(2G+c)c−G00(2G+c)cG+c000000(2G+c)c−G00(2G+c)cG+c000000(2G+c)c−G00(2G+c)cG+c⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤
D
e
′
:
(
c
I
+
D
e
′
)
−
1
:
D
e
′
=
[
4
G
2
2
G
+
c
0
0
0
0
0
0
0
0
0
4
G
2
2
G
+
c
0
0
0
0
0
0
0
0
0
4
G
2
2
G
+
c
0
0
0
0
0
0
0
0
0
2
G
2
(
2
G
+
c
)
0
0
2
G
2
(
2
G
+
c
)
0
0
0
0
0
0
2
G
2
(
2
G
+
c
)
0
0
2
G
2
(
2
G
+
c
)
0
0
0
0
0
0
2
G
2
(
2
G
+
c
)
0
0
2
G
2
(
2
G
+
c
)
0
0
0
2
G
2
(
2
G
+
c
)
0
0
2
G
2
(
2
G
+
c
)
0
0
0
0
0
0
2
G
2
(
2
G
+
c
)
0
0
2
G
2
(
2
G
+
c
)
0
0
0
0
0
0
2
G
2
(
2
G
+
c
)
0
0
2
G
2
(
2
G
+
c
)
]
\begin{aligned} &\bm{D'_e}:(c \bm{I}+ \bm{D'_e})^{-1}:\bm{D'_e} =\\\hdashline &\left[\begin{array}{ccc:ccc:ccc} \frac{4G^2}{2G+c} &0&0&0&0&0&0&0&0\\ 0&\frac{4G^2}{2G+c} &0&0&0&0&0&0&0\\ 0&0&\frac{4G^2}{2G+c} &0&0&0&0&0&0\\\hdashline 0 &0&0&\frac{2G^2}{(2G+c)} &0&0&\frac{2G^2}{(2G+c)} &0&0\\ 0&0&0&0&\frac{2G^2}{(2G+c)} &0&0&\frac{2G^2}{(2G+c)} &0\\ 0&0&0&0&0&\frac{2G^2}{(2G+c)} &0&0&\frac{2G^2}{(2G+c)} \\\hdashline 0 &0&0&\frac{2G^2}{(2G+c)} &0&0&\frac{2G^2}{(2G+c)} &0&0\\ 0&0&0&0&\frac{2G^2}{(2G+c)} &0&0&\frac{2G^2}{(2G+c)} &0\\ 0&0&0&0&0&\frac{2G^2}{(2G+c)} &0&0&\frac{2G^2}{(2G+c)} \\ \end{array}\right] \end{aligned}
De′:(cI+De′)−1:De′=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡2G+c4G20000000002G+c4G20000000002G+c4G2000000000(2G+c)2G200(2G+c)2G2000000(2G+c)2G200(2G+c)2G2000000(2G+c)2G200(2G+c)2G2000(2G+c)2G200(2G+c)2G2000000(2G+c)2G200(2G+c)2G2000000(2G+c)2G200(2G+c)2G2⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤
D
e
′
−
D
e
′
:
(
c
I
+
D
e
′
)
−
1
:
D
e
′
=
[
2
G
c
2
G
+
c
0
0
0
0
0
0
0
0
0
2
G
c
2
G
+
c
0
0
0
0
0
0
0
0
0
2
G
c
2
G
+
c
0
0
0
0
0
0
0
0
0
G
c
(
2
G
+
c
)
0
0
G
c
(
2
G
+
c
)
0
0
0
0
0
0
G
c
(
2
G
+
c
)
0
0
G
c
(
2
G
+
c
)
0
0
0
0
0
0
G
c
(
2
G
+
c
)
0
0
G
c
(
2
G
+
c
)
0
0
0
G
c
(
2
G
+
c
)
0
0
G
c
(
2
G
+
c
)
0
0
0
0
0
0
G
c
(
2
G
+
c
)
0
0
G
c
(
2
G
+
c
)
0
0
0
0
0
0
G
c
(
2
G
+
c
)
0
0
G
c
(
2
G
+
c
)
]
\begin{aligned} &\bm{D'_e}-\bm{D'_e}:(c \bm{I}+ \bm{D'_e})^{-1}:\bm{D'_e} =\\\hdashline &\left[\begin{array}{ccc:ccc:ccc} \frac{2Gc}{2G+c} &0&0&0&0&0&0&0&0\\ 0&\frac{2Gc}{2G+c} &0&0&0&0&0&0&0\\ 0&0&\frac{2Gc}{2G+c} &0&0&0&0&0&0\\\hdashline 0 &0&0&\frac{Gc}{(2G+c)} &0&0&\frac{Gc}{(2G+c)} &0&0\\ 0&0&0&0&\frac{Gc}{(2G+c)} &0&0&\frac{Gc}{(2G+c)} &0\\ 0&0&0&0&0&\frac{Gc}{(2G+c)} &0&0&\frac{Gc}{(2G+c)} \\\hdashline 0 &0&0&\frac{Gc}{(2G+c)} &0&0&\frac{Gc}{(2G+c)} &0&0\\ 0&0&0&0&\frac{Gc}{(2G+c)} &0&0&\frac{Gc}{(2G+c)} &0\\ 0&0&0&0&0&\frac{Gc}{(2G+c)} &0&0&\frac{Gc}{(2G+c)} \\ \end{array}\right] \end{aligned}
De′−De′:(cI+De′)−1:De′=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡2G+c2Gc0000000002G+c2Gc0000000002G+c2Gc000000000(2G+c)Gc00(2G+c)Gc000000(2G+c)Gc00(2G+c)Gc000000(2G+c)Gc00(2G+c)Gc000(2G+c)Gc00(2G+c)Gc000000(2G+c)Gc00(2G+c)Gc000000(2G+c)Gc00(2G+c)Gc⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤
[
D
e
′
−
D
e
′
:
(
c
I
+
D
e
′
)
−
1
:
D
e
′
]
:
(
I
−
1
3
I
^
)
+
K
I
^
=
[
K
+
4
G
c
3
(
2
G
+
c
)
K
+
−
2
G
c
3
(
2
G
+
c
)
K
+
−
2
G
c
3
(
2
G
+
c
)
0
0
0
0
0
0
K
+
−
2
G
c
3
(
2
G
+
c
)
K
+
4
G
c
3
(
2
G
+
c
)
K
+
−
2
G
c
3
(
2
G
+
c
)
0
0
0
0
0
0
K
+
−
2
G
c
3
(
2
G
+
c
)
K
+
−
2
G
c
3
(
2
G
+
c
)
K
+
4
G
c
3
(
2
G
+
c
)
0
0
0
0
0
0
0
0
0
G
c
(
2
G
+
c
)
0
0
G
c
(
2
G
+
c
)
0
0
0
0
0
0
G
c
(
2
G
+
c
)
0
0
G
c
(
2
G
+
c
)
0
0
0
0
0
0
G
c
(
2
G
+
c
)
0
0
G
c
(
2
G
+
c
)
0
0
0
G
c
(
2
G
+
c
)
0
0
G
c
(
2
G
+
c
)
0
0
0
0
0
0
G
c
(
2
G
+
c
)
0
0
G
c
(
2
G
+
c
)
0
0
0
0
0
0
G
c
(
2
G
+
c
)
0
0
G
c
(
2
G
+
c
)
]
\begin{aligned} &\left[\bm{D'_e}-\bm{D'_e}:(c \bm{I}+ \bm{D'_e})^{-1}:\bm{D'_e}\right]:(\bm{I-\frac{1}{3}{\hat{I}}})+K\bm{\hat{I}}=\\\hdashline &\left[ \begin{array}{ccc:ccc:ccc} K+\frac{4Gc}{3(2G+c)} &K+\frac{-2Gc}{3(2G+c)} &K+\frac{-2Gc}{3(2G+c)} &0&0&0&0&0&0\\ K+\frac{-2Gc}{3(2G+c)} &K+\frac{4Gc}{3(2G+c)} &K+\frac{-2Gc}{3(2G+c)} &0&0&0&0&0&0\\ K+\frac{-2Gc}{3(2G+c)} &K+\frac{-2Gc}{3(2G+c)} &K+\frac{4Gc}{3(2G+c)} &0&0&0&0&0&0\\\hdashline 0 &0&0&\frac{Gc}{(2G+c)} &0&0&\frac{Gc}{(2G+c)} &0&0\\ 0&0&0&0&\frac{Gc}{(2G+c)} &0&0&\frac{Gc}{(2G+c)} &0\\ 0&0&0&0&0&\frac{Gc}{(2G+c)} &0&0&\frac{Gc}{(2G+c)} \\\hdashline 0 &0&0&\frac{Gc}{(2G+c)} &0&0&\frac{Gc}{(2G+c)} &0&0\\ 0&0&0&0&\frac{Gc}{(2G+c)} &0&0&\frac{Gc}{(2G+c)} &0\\ 0&0&0&0&0&\frac{Gc}{(2G+c)} &0&0&\frac{Gc}{(2G+c)} \\ \end{array}\right] \end{aligned}
[De′−De′:(cI+De′)−1:De′]:(I−31I^)+KI^=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡K+3(2G+c)4GcK+3(2G+c)−2GcK+3(2G+c)−2Gc000000K+3(2G+c)−2GcK+3(2G+c)4GcK+3(2G+c)−2Gc000000K+3(2G+c)−2GcK+3(2G+c)−2GcK+3(2G+c)4Gc000000000(2G+c)Gc00(2G+c)Gc000000(2G+c)Gc00(2G+c)Gc000000(2G+c)Gc00(2G+c)Gc000(2G+c)Gc00(2G+c)Gc000000(2G+c)Gc00(2G+c)Gc000000(2G+c)Gc00(2G+c)Gc⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤
Voigt表記下的一致剛度矩陣(注:應變為工程應變
γ
x
y
=
2
ε
x
y
γ_{xy}=2ε_{xy}
γxy=2εxy):
[
K
+
4
G
c
3
(
2
G
+
c
)
K
+
−
2
G
c
3
(
2
G
+
c
)
K
+
−
2
G
c
3
(
2
G
+
c
)
0
0
0
K
+
−
2
G
c
3
(
2
G
+
c
)
K
+
4
G
c
3
(
2
G
+
c
)
K
+
−
2
G
c
3
(
2
G
+
c
)
0
0
0
K
+
−
2
G
c
3
(
2
G
+
c
)
K
+
−
2
G
c
3
(
2
G
+
c
)
K
+
4
G
c
3
(
2
G
+
c
)
0
0
0
0
0
0
G
c
(
2
G
+
c
)
0
0
0
0
0
0
G
c
(
2
G
+
c
)
0
0
0
0
0
0
G
c
(
2
G
+
c
)
]
\left[ \begin{array}{ccc:ccc} K+\frac{4Gc}{3(2G+c)} &K+\frac{-2Gc}{3(2G+c)} &K+\frac{-2Gc}{3(2G+c)} &0&0&0\\ K+\frac{-2Gc}{3(2G+c)} &K+\frac{4Gc}{3(2G+c)} &K+\frac{-2Gc}{3(2G+c)} &0&0&0\\ K+\frac{-2Gc}{3(2G+c)} &K+\frac{-2Gc}{3(2G+c)} &K+\frac{4Gc}{3(2G+c)} &0&0&0\\\hdashline 0 &0&0&\frac{Gc}{(2G+c)} &0&0\\ 0&0&0&0&\frac{Gc}{(2G+c)} &0\\ 0&0&0&0&0&\frac{Gc}{(2G+c)} \\ \end{array}\right]
⎣⎢⎢⎢⎢⎢⎢⎢⎢⎡K+3(2G+c)4GcK+3(2G+c)−2GcK+3(2G+c)−2Gc000K+3(2G+c)−2GcK+3(2G+c)4GcK+3(2G+c)−2Gc000K+3(2G+c)−2GcK+3(2G+c)−2GcK+3(2G+c)4Gc000000(2G+c)Gc000000(2G+c)Gc000000(2G+c)Gc⎦⎥⎥⎥⎥⎥⎥⎥⎥⎤
umat 程式
SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,
1 RPL,DDSDDT,DRPLDE,DRPLDT,
2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME,
3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,
4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,JSTEP,KINC)
C
INCLUDE 'ABA_PARAM.INC'
C
CHARACTER*80 CMNAME
DIMENSION STRESS(NTENS),STATEV(NSTATV),
1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS),
2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1),
3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3),
4 JSTEP(4),STRESS_TR(NTENS),STRESS_VALID(NTENS),DSTRAN_P(NTENS)
EE=PROPS(1) !modulus
EMU=PROPS(2) !Possion's ritio
SGM_Y=PROPS(3) !yield stress
EC=PROPS(4) !hardening
LMD=EE*EMU/((1.0+EMU)*(1.0-2.0*EMU))
EG=EE/(2.0*(1.0+EMU))
EK=EE/(3.0*(1.0-2.0*EMU))
DDSDDE=0.0
DO I=1,NDI
DDSDDE(I,I)=2*EG
ENDDO
DO I=NDI+1,NTENS
DDSDDE(I,I)=EG
ENDDO
DO I=1,NDI
DO J=1,NDI
DDSDDE(I,J)=DDSDDE(I,J)+LMD
ENDDO
ENDDO
DO I=1,NTENS
STRESS_TR(I)=STRESS(I)
ENDDO
DO I=1,NTENS
DO J=1,NTENS
STRESS_TR(I)=STRESS_TR(I)+ DDSDDE(I,J)*DSTRAN(J)
ENDDO
ENDDO
C 計算有效屈服應力
C STATEV(1) ~ STATEV(NTENS) 為背應力
DO I=1,NTENS
STRESS_VALID(I)=STRESS_TR(I)-STATEV(I)
ENDDO
STRESS_V=0.0
DO I=1,NDI
STRESS_V=STRESS_V+STRESS_VALID(I)
ENDDO
STRESS_V=STRESS_V/3.0
STRESS_MISES=0.0
DO I=1,NDI
STRESS_MISES=STRESS_MISES+(STRESS_VALID(I)-STRESS_V)**2.0
ENDDO
DO I=1+NDI,NTENS
STRESS_MISES=STRESS_MISES+2.0*STRESS_VALID(I)**2.0
ENDDO
STRESS_MISES=SQRT(1.5*STRESS_MISES)
C 判斷是否屈服
IF (STRESS_MISES .LE. SGM_Y) THEN
DO I=1,NTENS
STRESS(I)=STRESS_TR(I)
ENDDO
ELSE !屈服
DP=(STRESS_MISES-SGM_Y)/(EC+3.0*EG)
DO I=1,NDI
DSTRAN_P(I)=DP*1.5*(STRESS_VALID(I)-STRESS_V)/STRESS_MISES
ENDDO
DO I=1+NDI,NTENS
DSTRAN_P(I)=DP*1.5*STRESS_VALID(I)/STRESS_MISES
ENDDO
DO I=1,NTENS !應力更新
DO J=1,NTENS
STRESS(I)=STRESS(I)+ DDSDDE(I,J)*(DSTRAN(J)-DSTRAN_P(J))
ENDDO
ENDDO
DO I=1,NTENS !背應力更新
STATEV(I)=STATEV(I)+DSTRAN_P(I)*EC
ENDDO
ENDIF
RETURN
END
結果
相關文章
- 【Abaqus Case】2D彈塑性接觸分析
- 學習產品快報07 | “CSDN學習”移動端上線,讓學習隨時隨地
- ABAQUS軟體非線性分析有哪些特點
- 線性代數學習
- 線性表學習(4)
- 線性表學習1
- 線性基學習筆記筆記
- 隨機森林n_estimators 學習曲線隨機森林
- [譯] 可微可塑性:一種學會學習的新方法
- 從《爐石傳說》中學習隨機性設計隨機
- 有監督學習——線性迴歸
- 塑性力學本構模型基本框架7模型框架
- blender材質屬性:
- 深度學習:隨機值不可思議的有效性深度學習隨機
- 高擴充套件性的學習路線套件
- 線性規劃對偶學習筆記筆記
- 線性迴歸演算法學習總結演算法
- TensorFlow學習筆記(1):線性迴歸筆記
- O(n)-O(1) 線性 RMQ 學習筆記MQ筆記
- 程式碼可讀性隨想
- 《精通資料科學:從線性迴歸到深度學習》資料科學深度學習
- typora,markdown學習隨筆
- 隨機學習簡介隨機
- 前端學習程式碼例項-JavaScript 生成隨機數前端JavaScript隨機
- 學習《領域驅動設計-軟體核心複雜性應對之道》的過程隨筆
- 資料結構基礎學習之線性表資料結構
- 學習SVM(五)理解線性SVM的鬆弛因子
- 深度學習筆記002-線性迴歸深度學習筆記
- 【深度學習 01】線性迴歸+PyTorch實現深度學習PyTorch
- 用scikit-learn和pandas學習線性迴歸
- 用 Scikit-Learn 和 Pandas 學習線性迴歸
- 39 Three.js線性幾何體材質THREE.LineBasicMaterialJS
- 40 Three.js線性幾何體材質THREE.LineDashedMaterialJS
- 漫畫:程式語言學習曲線
- 好程式設計師web前端學習路線分享滾動穿透方法程式設計師Web前端穿透
- 好程式設計師web前端學習路線分享CSS浮動-清除浮動篇程式設計師Web前端CSS
- 學習不同程式語言的重要性
- 初學Node.js--學習隨筆Node.js