Educational Codeforces Round 100 (Rated for Div. 2)
100EDU祭
本文狀態:更新中
今天太晚,大致題意明天再補,這裡先說做法。
本場是邊做java作業邊打的一場edu,臨近期末ddl的事情很多。
A. Dungeon
題目連結
做法:如果
a
+
b
+
c
a+b+c
a+b+c的和
s
u
m
sum
sum是9的倍數而且
m
i
n
(
a
,
b
,
c
)
∗
9
≥
s
u
m
min(a,b,c)*9 \geq sum
min(a,b,c)∗9≥sum就可以,原因是隻有9的倍數才可能被蓄力炮同時秒掉,
m
i
n
≥
s
u
m
min \geq sum
min≥sum是因為我們要保證前面的蓄力炮不能炸死其中的一個怪,否則就不滿足題意了.
程式碼:
int T;
cin >> T;
while(T--)
{
int a,b,c;
cin >> a >> b >> c;
int sum = a + b + c;
if(sum % 9 == 0 && min(a,min(b,c))*9 >= sum)
{
cout << "YES" << endl;
}
else cout << "NO" << endl;
}
B. Find The Array
題目連結
做法:我自己的方法是,對於給出的每一個數,我們輸出
≤
a
[
i
]
\leq a[i]
≤a[i]的最大的那個2的倍數的數。比如一個數字是3,那麼它的二進位制是11,那麼我們應該輸出二進位制位10的數,即輸出2。此結論請讀者自己證明。
另外cf討論區找到了另外一種做法,而且附帶有證明,我覺得很好,貼在這裡。
下面附上我的方法的程式碼:
const int N = 55;
ll a[N];
ll calc(ll x)
{
ll wei = 0,t = 1;
while((t << wei) < x) ++wei;
return max(1LL,(ll)pow(2,wei-1));
}
int main()
{
int T;
cin >> T;
while(T--)
{
int n;
cin >> n;
rep(i,1,n) cin >> a[i];
rep(i,1,n)
{
cout << calc(a[i]) << " ";
}
cout << endl;
}
}
C. Busy Robot
題目連結
模擬,待補。
D. Pairs
題目連結
今天太晚,思路明天補,其實就是模擬範圍。
現附上程式碼:
const int N = 1e6+6;
set<int> s1, s2;
int b[N], vis[N];
int n, ans1, ans2;
void init()
{
ans1 = 0;
ans2 = 0;
cin >> n;
MEM(vis, 0);
rep(i, 1, n)
{
cin >> b[i];
vis[b[i]] = 1;
}
s1.clear();
s2.clear();
rep(i, 1, 2 * n)
{
if (vis[i] == 0)
{
s1.insert(i);
s2.insert(i);
}
}
}
int solve(int ans1, int ans2)
{
rep(i, 1, n)
{
auto it1 = s1.lower_bound(b[i]);
auto it2 = s2.lower_bound(b[i]); //找第一個小於b[i]的數
if (it1 != s1.end()) //如果找到了
{
ans1++;
s1.erase(it1);
}
if (it2 != s2.begin())
{
ans2++;
it2--;
s2.erase(it2);
}
}
return abs(ans1 + ans2 - n) + 1;
}
int main()
{
int T;
cin >> T;
while (T--)
{
init();
cout << solve(ans1, ans2) << endl;
}
return 0;
}
相關文章
- Educational Codeforces Round 172 (Rated for Div. 2)
- Educational Codeforces Round 170 (Rated for Div. 2)
- Educational Codeforces Round 168 (Rated for Div. 2)
- Educational Codeforces Round 163 (Rated for Div. 2)
- Educational Codeforces Round 154 (Rated for Div. 2)
- Educational Codeforces Round 93 (Rated for Div. 2)
- Educational Codeforces Round 37 (Rated for Div. 2)
- Educational Codeforces Round 170 (Rated for Div. 2) ABCD
- Educational Codeforces Round 168 (Rated for Div. 2) A - E
- Educational Codeforces Round 171 (Rated for Div. 2) 題解
- vp Educational Codeforces Round 168 (Rated for Div. 2) A - E
- Educational Codeforces Round 170 (Rated for Div. 2) A-D
- Educational Codeforces Round 168 (Rated for Div. 2) 題解
- Educational Codeforces Round 142 (Rated for Div. 2) A-D
- Educational Codeforces Round 143 (Rated for Div. 2) A-E
- Educational Codeforces Round 93 (Rated for Div. 2)題解
- Educational Codeforces Round 158 (Rated for Div. 2) - VP記錄
- Educational Codeforces Round 159 (Rated for Div. 2) - VP記錄
- Educational Codeforces Round 162 (Rated for Div. 2) - VP記錄
- Educational Codeforces Round 163 (Rated for Div. 2) - VP記錄
- Educational Codeforces Round 166 (Rated for Div. 2) - VP記錄
- 【CodeForces訓練記錄】Educational Codeforces Round 171 (Rated for Div. 2)
- Educational Codeforces Round 95 (Rated for Div. 2) G. Three Occurrences
- Educational Codeforces Round 167 (Rated for Div. 2) D(dp,貪心)
- Educational Codeforces Round 163 (Rated for Div. 2) 補題記錄(A~A)
- Educational Codeforces Round 99 (Rated for Div. 2)D. Sequence and Swaps
- Educational Codeforces Round 172 (Rated for Div. 2)題解記錄(A~D)
- [CF1954] Educational Codeforces Round 164 (Rated for Div. 2) 題解
- Educational Codeforces Round 165 (Rated for Div. 2) C. Minimizing the Sum題解
- Educational Codeforces Round 99 (Rated for Div. 2) D. Sequence and Swaps(貪心)
- Educational Codeforces Round 171 (Div. 2)
- Educational Codeforces Round 98 (Rated for Div. 2) E. Two Editorials 細節題
- Educational Codeforces Round 166 (Rated for Div. 2) (補題之抽象的自我審題)抽象
- Educational Codeforces Round 53 (Rated for Div. 2) C. Vasya and Robot 二分+前字尾預處理
- 【CodeForces訓練記錄】CodeTON Round 9 (Div. 1 + Div. 2, Rated, Prizes!)
- Educational Codeforces Round 100-C. Busy Robot
- 21 Educational Codeforces Round 136 (Rated for Div. 2)Knowledge Cards(樹狀陣列、set、+思維、數字華容道)陣列
- Educational Codeforces Round 53 (Rated for Div. 2) D. Berland Fair 二分+樹狀陣列 O(n*logn*logn) 思路AI陣列