python資料結構之圖深度優先和廣度優先

yupeng發表於2013-11-08

首先有一個概念:回溯

  回溯法(探索與回溯法)是一種選優搜尋法,按選優條件向前搜尋,以達到目標。但當探索到某一步時,發現原先選擇並不優或達不到目標,就退回一步重新選擇,這種走不通就退回再走的技術為回溯法,而滿足回溯條件的某個狀態的點稱為“回溯點”。

深度優先演算法:

(1)訪問初始頂點v並標記頂點v已訪問。
(2)查詢頂點v的第一個鄰接頂點w。
(3)若頂點v的鄰接頂點w存在,則繼續執行;否則回溯到v,再找v的另外一個未訪問過的鄰接點。
(4)若頂點w尚未被訪問,則訪問頂點w並標記頂點w為已訪問。
(5)繼續查詢頂點w的下一個鄰接頂點wi,如果v取值wi轉到步驟(3)。直到連通圖中所有頂點全部訪問過為止。

廣度優先演算法:

(1)頂點v入佇列。
(2)當佇列非空時則繼續執行,否則演算法結束。
(3)出佇列取得隊頭頂點v;訪問頂點v並標記頂點v已被訪問。
(4)查詢頂點v的第一個鄰接頂點col。
(5)若v的鄰接頂點col未被訪問過的,則col入佇列。
(6)繼續查詢頂點v的另一個新的鄰接頂點col,轉到步驟(5)。直到頂點v的所有未被訪問過的鄰接點處理完。轉到步驟(2)。

程式碼:

#!/usr/bin/python
# -*- coding: utf-8 -*-

class Graph(object):

    def __init__(self,*args,**kwargs):
        self.node_neighbors = {}
        self.visited = {}

    def add_nodes(self,nodelist):

        for node in nodelist:
            self.add_node(node)

    def add_node(self,node):
        if not node in self.nodes():
            self.node_neighbors[node] = []

    def add_edge(self,edge):
        u,v = edge
        if(v not in self.node_neighbors[u]) and ( u not in self.node_neighbors[v]):
            self.node_neighbors[u].append(v)

            if(u!=v):
                self.node_neighbors[v].append(u)

    def nodes(self):
        return self.node_neighbors.keys()

    def depth_first_search(self,root=None):
        order = []
        def dfs(node):
            self.visited[node] = True
            order.append(node)
            for n in self.node_neighbors[node]:
                if not n in self.visited:
                    dfs(n)


        if root:
            dfs(root)

        for node in self.nodes():
            if not node in self.visited:
                dfs(node)

        print order
        return order

    def breadth_first_search(self,root=None):
        queue = []
        order = []
        def bfs():
            while len(queue)> 0:
                node  = queue.pop(0)

                self.visited[node] = True
                for n in self.node_neighbors[node]:
                    if (not n in self.visited) and (not n in queue):
                        queue.append(n)
                        order.append(n)

        if root:
            queue.append(root)
            order.append(root)
            bfs()

        for node in self.nodes():
            if not node in self.visited:
                queue.append(node)
                order.append(node)
                bfs()
        print order

        return order


if __name__ == '__main__':
    g = Graph()
g.add_nodes([i+1 for i in range(8)])
g.add_edge((1, 2))
g.add_edge((1, 3))
g.add_edge((2, 4))
g.add_edge((2, 5))
g.add_edge((4, 8))
g.add_edge((5, 8))
g.add_edge((3, 6))
g.add_edge((3, 7))
g.add_edge((6, 7))
print "nodes:", g.nodes()

order = g.breadth_first_search(1)
order = g.depth_first_search(1)

結果:

nodes: [1, 2, 3, 4, 5, 6, 7, 8]

廣度優先:
[1, 2, 3, 4, 5, 6, 7, 8]

深度優先:

[1, 2, 4, 8, 5, 3, 6, 7]

相關文章