【Fuzzy】不確定規劃:模糊規劃模型

minuxAE發表於2020-11-30

模糊期望值模型

x x x為決策向量, ξ \xi ξ為模糊向量, f ( x , ξ ) f(x, \xi) f(x,ξ)為目標函式, g j ( x , ξ ) g_j(x, \xi) gj(x,ξ)表示約束函式, j = 1 , 2 , … , p j=1, 2, \dots, p j=1,2,,p,具有以下形式的模糊規劃
max ⁡ f ( x , ξ ) s . t . g j ( x , ξ ) ≤ 0 , j = 1 , 2 , … , p (1) \max f(x, \xi)\\ s.t.\quad g_j(x, \xi)\leq 0, j=1, 2, \dots, p \tag{1} maxf(x,ξ)s.t.gj(x,ξ)0,j=1,2,,p(1)
但是模型 ( 1 ) (1) (1)並不是明確的規劃函式,Liu給出了明確地模糊期望值模型.
考慮最大化期望效益的決策,可以建立如下單目標模糊期望值模型
max ⁡ E [ f ( x , ξ ) ] s . t . E [ g j ( x , ξ ) ] ≤ 0 , j = 1 , 2 , … , p \max \mathbb{E}[f(x, \xi)]\\ s.t.\quad \mathbb{E}[g_j(x, \xi)]\leq 0, j=1, 2, \dots, p maxE[f(x,ξ)]s.t.E[gj(x,ξ)]0,j=1,2,,p
該問題的多目標規劃形式如下
max ⁡ [ E [ f 1 ( x , ξ ) ] , E [ f 2 ( x , ξ ) ] , … , E [ f m ( x , ξ ) ] ] s . t . E [ g j ( x , ξ ) ] ≤ 0 , j = 1 , 2 , … , p \max [\mathbb{E}[f_1(x, \xi)], \mathbb{E}[f_2(x, \xi)], \dots, \mathbb{E}[f_m(x, \xi)]]\\ s.t.\quad \mathbb{E}[g_j(x, \xi)]\leq 0, j=1, 2, \dots, p max[E[f1(x,ξ)],E[f2(x,ξ)],,E[fm(x,ξ)]]s.t.E[gj(x,ξ)]0,j=1,2,,p
為了平衡多個目標,建立建立目標規劃模型
min ⁡ ∑ j = 1 l P j ∑ i = 1 m ( u i j d i + + v i j d i − ) s . t . { E [ f i ( x , ξ ) ] + d i − − d i − = b i , i = 1 , 2 , … , m E [ g j ( x , ξ ) ] ≤ 0 , j = 1 , 2 , … , p d i + , d i − ≥ 0 \min \sum_{j=1}^l P_j\sum_{i=1}^m(u_{ij}d_i^++v_{ij}d_i^-)\\ s.t. \begin{cases} \mathbb{E}[f_i(x, \xi)]+d_i^--d_i^-=b_i, \quad i=1,2, \dots, m\\ \mathbb{E}[g_j(x, \xi)]\leq 0,\quad j=1,2, \dots, p\\ d_i^+, d_i^-\geq 0 \end{cases} minj=1lPji=1m(uijdi++vijdi)s.t.E[fi(x,ξ)]+didi=bi,i=1,2,,mE[gj(x,ξ)]0,j=1,2,,pdi+,di0
其中 P j P_j Pj表示優先因子,表示各個目標的相對重要性,並且對於所有的 j j j,有 P j ≫ P j + 1 P_j\gg P_{j+1} PjPj+1 u i j u_{ij} uij為對應優先順序 j j j的第 i i i個目標的正偏差權重因子, v i j v_{ij} vij相應的負偏差權重因子. 設定目標 i i i的目標值,得到關於目標的正負目標偏差為
d i + = [ E [ f ( x , ξ ) ] − b i ] ∨ 0 d_i^+=[\mathbb{E}[f(x, \xi)]-b_i]\vee 0 di+=[E[f(x,ξ)]bi]0
以及
d i − = [ b i − E [ f ( x , ξ ) ] ] ∨ 0 d_i^-=[b_i-\mathbb{E}[f(x, \xi)]]\vee 0 di=[biE[f(x,ξ)]]0

Possibilistic expected mean-variance model

As the description of the mean returns and risks of asset returns by the coherent trapezoidal fuzzy numbers, the possibilistic expected mean and variance for the coherent for the coherent trapezoidal fuzzy numbers are counterparts of the usual expected mean and variance of asset returns in Markowitzian mean-variance methodology. Therefore, following Markowitzian expected mean-variance methodology, in order to obtain an optimized portfolio the possibilistic expected mean can be maximized given the upper bound of the risk the investor can bear, i.e., the possibilistic variance of the portfolio. Specifically, the possibilistic expected mean-variance model for portfolio selection by the coherent trapezoidal fuzzy numbers can be structured as follows:

max ⁡ E ( x 1 A 1 ⊕ x 2 A x ⋯ ⊕ x n A n ) s . t . { V ( x 1 A 1 ⊕ ⋯ ⊕ x n A n ) ≤ ν ∑ i = 1 n x i = 1 0 ≤ x i ≤ 1 , i = 1 , 2 , … , n \max \mathbb{E}(x_1A_1\oplus x_2A_x\dots \oplus x_nA_n)\\ s.t. \begin{cases} \mathbb{V}(x_1A_1\oplus \dots\oplus x_nA_n)\leq \nu\\ \sum_{i=1}^n x_i=1\\ 0\leq x_i\leq 1, i=1, 2, \dots, n \end{cases} maxE(x1A1x2AxxnAn)s.t.V(x1A1xnAn)νi=1nxi=10xi1,i=1,2,,n

Similarly, the possibilistic expected mean-variance model can restructured by minimizing the possibilistic variance given the lower bound of the possibilistic expected mean. In detail

min ⁡ V ( x 1 A 1 ⊕ x 2 A 2 ⊕ ⋯ ⊕ x n A n ) s . t . { E ( x 1 A 1 ⊕ x 2 A 2 ⊕ ⋯ ⊕ x n A n ) ≥ α ∑ i = 1 n x i = 1 0 ≤ x i ≤ 1 , i = 1 , 2 , … , n \min V(x_1A_1\oplus x_2A_2\oplus\dots \oplus x_nA_n)\\ s.t. \begin{cases} \mathbb{E}(x_1A_1\oplus x_2A_2\oplus\dots \oplus x_nA_n)\geq \alpha\\ \sum_{i=1}^n x_i=1\\ 0\leq x_i\leq 1, i=1, 2, \dots, n \end{cases} minV(x1A1x2A2xnAn)s.t.E(x1A1x2A2xnAn)αi=1nxi=10xi1,i=1,2,,n

Possibilistic expected mean-variance-skewness model

The mean-variance-skewness model for portfolio selection was formulated and was investigated in the non-probabilistic framework.
max ⁡ S ( x 1 A 1 ⊕ x 2 A 2 ⊕ ⋯ ⊕ x n A n ) s . t . { E ( x 1 A 1 ⊕ x 2 A 2 ⊕ ⋯ ⊕ x n A n ) ≥ α V ( x 1 A 1 ⊕ x 2 A 2 ⊕ ⋯ ⊕ x n A n ) ≤ ν ∑ i = 1 n x i = 1 0 ≤ x i ≤ 1 , i = 1 , 2 , … , n \max S(x_1A_1\oplus x_2A_2\oplus\dots \oplus x_nA_n)\\ s.t. \begin{cases} \mathbb{E}(x_1A_1\oplus x_2A_2\oplus\dots \oplus x_nA_n)\geq \alpha\\ \mathbb{V}(x_1A_1\oplus x_2A_2\oplus\dots \oplus x_nA_n)\leq \nu\\ \sum_{i=1}^n x_i=1\\ 0\leq x_i\leq 1, i=1, 2, \dots, n \end{cases} maxS(x1A1x2A2xnAn)s.t.E(x1A1x2A2xnAn)αV(x1A1x2A2xnAn)νi=1nxi=10xi1,i=1,2,,n

模糊機會約束規劃

機會約束

x x x為決策向量, ξ \xi ξ為引數向量, f ( x , ξ ) f(x, \xi) f(x,ξ)為目標函式, g j ( x , ξ ) g_j(x, \xi) gj(x,ξ)為約束函式,由於加入了模糊變數,可以希望約束以一定置信水平 α \alpha α成立,即有機會約束
C r { ( g j ( x , ξ ) ) ≤ 0 , j = 1 , 2 , … , p } ≥ α Cr\{(g_j(x, \xi))\leq 0, j=1, 2, \dots, p\}\geq \alpha Cr{(gj(x,ξ))0,j=1,2,,p}α

Maximax機會約束規劃

如果在一定置信水平成立的前提下,極大化目標函式的樂觀值,可以有以下的模糊機會規劃模型成立
max ⁡ f ˉ s . t . { C r { f ( x , ξ ) ≥ f ˉ } ≥ β C r { g i ( x , ξ ) ≤ 0 , j = 1 , 2 , … , p } ≥ α \max \bar{f}\\ s.t. \begin{cases} Cr\{f(x, \xi)\geq \bar{f}\}\geq \beta\\ Cr\{g_i(x, \xi)\leq 0, j=1, 2, \dots, p\}\geq \alpha \end{cases} maxfˉs.t.{Cr{f(x,ξ)fˉ}βCr{gi(x,ξ)0,j=1,2,,p}α
其中 α \alpha α β \beta β為預先給定的置信水平,該模型可以等價於如下max-max形式,其中 f ˉ \bar{f} fˉ為樂觀值
max ⁡ x max ⁡ f ˉ s . t . { C r { f ( x , ξ ) ≥ f ˉ } ≥ β C r { g j ( x , ξ ) ≤ 0 , j = 1 , 2 , … , p } ≥ α \max_x\max \bar{f}\\ s.t. \begin{cases} Cr\{f(x, \xi)\geq \bar{f}\}\geq \beta\\ Cr\{g_j(x, \xi)\leq 0, j=1, 2, \dots, p\}\geq \alpha \end{cases} xmaxmaxfˉs.t.{Cr{f(x,ξ)fˉ}βCr{gj(x,ξ)0,j=1,2,,p}α
多目標決策模型為
max ⁡ x [ max ⁡ f ˉ 1 f ˉ 1 , max ⁡ f ˉ 1 f ˉ 2 , … , max ⁡ f ˉ m f ˉ m ] s . t . { C r { f i ( x , ξ ) ≥ f ˉ i } ≥ β ˉ i , i = 1 , 2 , … , m C r { g j ( x , ξ ) ≤ 0 } ≥ α j , j = 1 , 2 , … , p \max_x\bigg[ \max_{\bar{f}_1}\bar{f}_1, \max_{\bar{f}_1}\bar{f}_2, \dots,\max_{\bar{f}_m}\bar{f}_m\bigg]\\ s.t. \begin{cases} Cr\{f_i(x, \xi)\geq \bar{f}_i\}\geq \bar{\beta}_i, i=1, 2, \dots, m\\ Cr\{g_j(x, \xi)\leq 0\}\geq \alpha_j, j=1, 2, \dots, p \end{cases} xmax[fˉ1maxfˉ1,fˉ1maxfˉ2,,fˉmmaxfˉm]s.t.{Cr{fi(x,ξ)fˉi}βˉi,i=1,2,,mCr{gj(x,ξ)0}αj,j=1,2,,p
根據目標的優先結構和目標水平,還可以構建如下機會約束的目標規劃
min ⁡ ∑ j = 1 l P j ∑ i = 1 m ( u i j d i + + v i j d i − ) s . t . { C r { f i ( x , ξ ) } − b i ≤ d i + } ≥ β i + C r { b i − f i ( x , ξ ) ≤ d i − } ≥ β i − C r { g j ( x , ξ ) ≤ 0 } ≥ α j d i + , d i − ≥ 0 \min \sum_{j=1}^l P_j\sum_{i=1}^m(u_{ij}d_i^++v_{ij}d_i^- )\\ s.t. \begin{cases} Cr\{f_i(x, \xi)\}-b_i\leq d_i^+\}\geq \beta_i^+\\ Cr\{b_i-f_i(x, \xi)\leq d_i^-\}\geq \beta_i^-\\ Cr\{g_j(x, \xi)\leq 0\}\geq \alpha_j\\ d_i^+, d_i^-\geq 0 \end{cases} minj=1lPji=1m(uijdi++vijdi)s.t.Cr{fi(x,ξ)}bidi+}βi+Cr{bifi(x,ξ)di}βiCr{gj(x,ξ)0}αjdi+,di0
在模糊向量退化為清晰向量時,置信水平約束條件退化為
d i + = [ f i ( x , ξ ) − b i ] ∨ 0 d i − = [ b i − f i ( x , ξ ) ] ∨ 0 d_i^+=[f_i(x, \xi)-b_i]\vee 0\\ d_i^-=[b_i-f_i(x, \xi)]\vee 0 di+=[fi(x,ξ)bi]0di=[bifi(x,ξ)]0

Minimax機會約束規劃

Robust optimization中的worst case思想一致,可以考慮極大化目標函式的悲觀值
max ⁡ x min ⁡ f ˉ s . t . { C r { f ( x , ξ ) ≤ f ˉ } ≥ β C r { g j ( x , ξ ) ≤ 0 , j = 1 , 2 , … , p } ≥ α \max_x\min \bar{f}\\ s.t. \begin{cases} Cr\{f(x, \xi)\leq \bar{f}\}\geq \beta\\ Cr\{g_j(x, \xi)\leq 0, j=1, 2, \dots, p\}\geq \alpha \end{cases} xmaxminfˉs.t.{Cr{f(x,ξ)fˉ}βCr{gj(x,ξ)0,j=1,2,,p}α
同樣可以推匯出多目標的情況
max ⁡ x [ min ⁡ f ˉ 1 , min ⁡ f ˉ 2 , … , min ⁡ f ˉ m ] s . t . { C r { f i ( x , ξ ) ≤ f ˉ i } ≥ β i C r { g j ( x , ξ ) ≤ 0 , j = 1 , 2 , … , p } ≥ α j \max_x\bigg[\min \bar{f}_1, \min \bar{f}_2, \dots, \min\bar{f}_m\bigg]\\ s.t. \begin{cases} Cr\{f_i(x, \xi)\leq \bar{f}_i\}\geq \beta_i\\ Cr\{g_j(x, \xi)\leq 0, j=1, 2, \dots, p\}\geq \alpha_j \end{cases} xmax[minfˉ1,minfˉ2,,minfˉm]s.t.{Cr{fi(x,ξ)fˉi}βiCr{gj(x,ξ)0,j=1,2,,p}αj

定理

f P , f N , f C f_P, f_N, f_C fP,fN,fC分別是在PosNecCr測度下的目標最優值,則關係
f N ≤ f C ≤ f P f_N\leq f_C\leq f_P fNfCfP
成立.
根據定義可以推匯出
f C = max ⁡ x ∈ S C max ⁡ f ˉ { f ˉ ∣ C r { f ( x , ξ ) ≥ f ˉ } ≥ β } ≤ max ⁡ x ∈ S C max ⁡ f ˉ { f ˉ ∣ P o s { f ( x , ξ ) ≥ f ˉ } ≥ β } ≤ max ⁡ x ∈ S P max ⁡ f ˉ { f ˉ ∣ P o s { f ( x , ξ ) } ≥ f ˉ } ≥ β } = f P \begin{aligned} f_C&=\max_{x\in S_C}\max_{\bar{f}}\{\bar{f}\mid Cr\{f(x, \xi)\geq \bar{f}\}\geq \beta\}\\ &\leq \max_{x\in S_C}\max_{\bar{f}}\{\bar{f}\mid Pos\{f(x, \xi)\geq \bar{f}\}\geq \beta \}\\ &\leq \max_{x\in S_P}\max_{\bar{f}}\{\bar{f}\mid Pos\{f(x, \xi)\}\geq \bar{f}\}\geq \beta\}\\ &=f_P \end{aligned} fC=xSCmaxfˉmax{fˉCr{f(x,ξ)fˉ}β}xSCmaxfˉmax{fˉPos{f(x,ξ)fˉ}β}xSPmaxfˉmax{fˉPos{f(x,ξ)}fˉ}β}=fP
根據Hurwicz準則,對maximaxminimax模型分別賦予 λ \lambda λ 1 − λ 1-\lambda 1λ的權重,其中 λ \lambda λ表示悲觀程度
max ⁡ λ f min ⁡ + ( 1 − λ ) f max ⁡ s . t . P o s / N e c / C r { g j ( x , ξ ) ≤ 0 , j = 1 , 2 , … , p } ≥ α \max \lambda f_{\min}+(1-\lambda)f_{\max}\\ s.t.\quad Pos/Nec/Cr\{g_j(x, \xi)\leq 0, j=1, 2, \dots, p\}\geq \alpha maxλfmin+(1λ)fmaxs.t.Pos/Nec/Cr{gj(x,ξ)0,j=1,2,,p}α

參考文獻

不確定規劃 清華大學出版社
Portfolio selection with coherent investor’s expectations under uncertainty

相關文章