【Fuzzy】不確定規劃:模糊規劃模型
Navigator
模糊期望值模型
設
x
x
x為決策向量,
ξ
\xi
ξ為模糊向量,
f
(
x
,
ξ
)
f(x, \xi)
f(x,ξ)為目標函式,
g
j
(
x
,
ξ
)
g_j(x, \xi)
gj(x,ξ)表示約束函式,
j
=
1
,
2
,
…
,
p
j=1, 2, \dots, p
j=1,2,…,p,具有以下形式的模糊規劃
max
f
(
x
,
ξ
)
s
.
t
.
g
j
(
x
,
ξ
)
≤
0
,
j
=
1
,
2
,
…
,
p
(1)
\max f(x, \xi)\\ s.t.\quad g_j(x, \xi)\leq 0, j=1, 2, \dots, p \tag{1}
maxf(x,ξ)s.t.gj(x,ξ)≤0,j=1,2,…,p(1)
但是模型
(
1
)
(1)
(1)並不是明確的規劃函式,Liu給出了明確地模糊期望值模型.
考慮最大化期望效益的決策,可以建立如下單目標模糊期望值模型
max
E
[
f
(
x
,
ξ
)
]
s
.
t
.
E
[
g
j
(
x
,
ξ
)
]
≤
0
,
j
=
1
,
2
,
…
,
p
\max \mathbb{E}[f(x, \xi)]\\ s.t.\quad \mathbb{E}[g_j(x, \xi)]\leq 0, j=1, 2, \dots, p
maxE[f(x,ξ)]s.t.E[gj(x,ξ)]≤0,j=1,2,…,p
該問題的多目標規劃形式如下
max
[
E
[
f
1
(
x
,
ξ
)
]
,
E
[
f
2
(
x
,
ξ
)
]
,
…
,
E
[
f
m
(
x
,
ξ
)
]
]
s
.
t
.
E
[
g
j
(
x
,
ξ
)
]
≤
0
,
j
=
1
,
2
,
…
,
p
\max [\mathbb{E}[f_1(x, \xi)], \mathbb{E}[f_2(x, \xi)], \dots, \mathbb{E}[f_m(x, \xi)]]\\ s.t.\quad \mathbb{E}[g_j(x, \xi)]\leq 0, j=1, 2, \dots, p
max[E[f1(x,ξ)],E[f2(x,ξ)],…,E[fm(x,ξ)]]s.t.E[gj(x,ξ)]≤0,j=1,2,…,p
為了平衡多個目標,建立建立目標規劃模型
min
∑
j
=
1
l
P
j
∑
i
=
1
m
(
u
i
j
d
i
+
+
v
i
j
d
i
−
)
s
.
t
.
{
E
[
f
i
(
x
,
ξ
)
]
+
d
i
−
−
d
i
−
=
b
i
,
i
=
1
,
2
,
…
,
m
E
[
g
j
(
x
,
ξ
)
]
≤
0
,
j
=
1
,
2
,
…
,
p
d
i
+
,
d
i
−
≥
0
\min \sum_{j=1}^l P_j\sum_{i=1}^m(u_{ij}d_i^++v_{ij}d_i^-)\\ s.t. \begin{cases} \mathbb{E}[f_i(x, \xi)]+d_i^--d_i^-=b_i, \quad i=1,2, \dots, m\\ \mathbb{E}[g_j(x, \xi)]\leq 0,\quad j=1,2, \dots, p\\ d_i^+, d_i^-\geq 0 \end{cases}
minj=1∑lPji=1∑m(uijdi++vijdi−)s.t.⎩⎪⎨⎪⎧E[fi(x,ξ)]+di−−di−=bi,i=1,2,…,mE[gj(x,ξ)]≤0,j=1,2,…,pdi+,di−≥0
其中
P
j
P_j
Pj表示優先因子,表示各個目標的相對重要性,並且對於所有的
j
j
j,有
P
j
≫
P
j
+
1
P_j\gg P_{j+1}
Pj≫Pj+1,
u
i
j
u_{ij}
uij為對應優先順序
j
j
j的第
i
i
i個目標的正偏差權重因子,
v
i
j
v_{ij}
vij相應的負偏差權重因子. 設定目標
i
i
i的目標值,得到關於目標的正負目標偏差為
d
i
+
=
[
E
[
f
(
x
,
ξ
)
]
−
b
i
]
∨
0
d_i^+=[\mathbb{E}[f(x, \xi)]-b_i]\vee 0
di+=[E[f(x,ξ)]−bi]∨0
以及
d
i
−
=
[
b
i
−
E
[
f
(
x
,
ξ
)
]
]
∨
0
d_i^-=[b_i-\mathbb{E}[f(x, \xi)]]\vee 0
di−=[bi−E[f(x,ξ)]]∨0
Possibilistic expected mean-variance model
As the description of the mean returns and risks of asset returns by the coherent trapezoidal fuzzy numbers, the possibilistic expected mean and variance for the coherent for the coherent trapezoidal fuzzy numbers are counterparts of the usual expected mean and variance of asset returns in Markowitzian mean-variance methodology. Therefore, following Markowitzian expected mean-variance methodology, in order to obtain an optimized portfolio the possibilistic expected mean can be maximized given the upper bound of the risk the investor can bear, i.e., the possibilistic variance of the portfolio. Specifically, the possibilistic expected mean-variance model for portfolio selection by the coherent trapezoidal fuzzy numbers can be structured as follows:
max E ( x 1 A 1 ⊕ x 2 A x ⋯ ⊕ x n A n ) s . t . { V ( x 1 A 1 ⊕ ⋯ ⊕ x n A n ) ≤ ν ∑ i = 1 n x i = 1 0 ≤ x i ≤ 1 , i = 1 , 2 , … , n \max \mathbb{E}(x_1A_1\oplus x_2A_x\dots \oplus x_nA_n)\\ s.t. \begin{cases} \mathbb{V}(x_1A_1\oplus \dots\oplus x_nA_n)\leq \nu\\ \sum_{i=1}^n x_i=1\\ 0\leq x_i\leq 1, i=1, 2, \dots, n \end{cases} maxE(x1A1⊕x2Ax⋯⊕xnAn)s.t.⎩⎪⎨⎪⎧V(x1A1⊕⋯⊕xnAn)≤ν∑i=1nxi=10≤xi≤1,i=1,2,…,n
Similarly, the possibilistic expected mean-variance model can restructured by minimizing the possibilistic variance given the lower bound of the possibilistic expected mean. In detail
min V ( x 1 A 1 ⊕ x 2 A 2 ⊕ ⋯ ⊕ x n A n ) s . t . { E ( x 1 A 1 ⊕ x 2 A 2 ⊕ ⋯ ⊕ x n A n ) ≥ α ∑ i = 1 n x i = 1 0 ≤ x i ≤ 1 , i = 1 , 2 , … , n \min V(x_1A_1\oplus x_2A_2\oplus\dots \oplus x_nA_n)\\ s.t. \begin{cases} \mathbb{E}(x_1A_1\oplus x_2A_2\oplus\dots \oplus x_nA_n)\geq \alpha\\ \sum_{i=1}^n x_i=1\\ 0\leq x_i\leq 1, i=1, 2, \dots, n \end{cases} minV(x1A1⊕x2A2⊕⋯⊕xnAn)s.t.⎩⎪⎨⎪⎧E(x1A1⊕x2A2⊕⋯⊕xnAn)≥α∑i=1nxi=10≤xi≤1,i=1,2,…,n
Possibilistic expected mean-variance-skewness model
The mean-variance-skewness model for portfolio selection was formulated and was investigated in the non-probabilistic framework.
max
S
(
x
1
A
1
⊕
x
2
A
2
⊕
⋯
⊕
x
n
A
n
)
s
.
t
.
{
E
(
x
1
A
1
⊕
x
2
A
2
⊕
⋯
⊕
x
n
A
n
)
≥
α
V
(
x
1
A
1
⊕
x
2
A
2
⊕
⋯
⊕
x
n
A
n
)
≤
ν
∑
i
=
1
n
x
i
=
1
0
≤
x
i
≤
1
,
i
=
1
,
2
,
…
,
n
\max S(x_1A_1\oplus x_2A_2\oplus\dots \oplus x_nA_n)\\ s.t. \begin{cases} \mathbb{E}(x_1A_1\oplus x_2A_2\oplus\dots \oplus x_nA_n)\geq \alpha\\ \mathbb{V}(x_1A_1\oplus x_2A_2\oplus\dots \oplus x_nA_n)\leq \nu\\ \sum_{i=1}^n x_i=1\\ 0\leq x_i\leq 1, i=1, 2, \dots, n \end{cases}
maxS(x1A1⊕x2A2⊕⋯⊕xnAn)s.t.⎩⎪⎪⎪⎨⎪⎪⎪⎧E(x1A1⊕x2A2⊕⋯⊕xnAn)≥αV(x1A1⊕x2A2⊕⋯⊕xnAn)≤ν∑i=1nxi=10≤xi≤1,i=1,2,…,n
模糊機會約束規劃
機會約束
設
x
x
x為決策向量,
ξ
\xi
ξ為引數向量,
f
(
x
,
ξ
)
f(x, \xi)
f(x,ξ)為目標函式,
g
j
(
x
,
ξ
)
g_j(x, \xi)
gj(x,ξ)為約束函式,由於加入了模糊變數,可以希望約束以一定置信水平
α
\alpha
α成立,即有機會約束
C
r
{
(
g
j
(
x
,
ξ
)
)
≤
0
,
j
=
1
,
2
,
…
,
p
}
≥
α
Cr\{(g_j(x, \xi))\leq 0, j=1, 2, \dots, p\}\geq \alpha
Cr{(gj(x,ξ))≤0,j=1,2,…,p}≥α
Maximax機會約束規劃
如果在一定置信水平成立的前提下,極大化目標函式的樂觀值,可以有以下的模糊機會規劃模型成立
max
f
ˉ
s
.
t
.
{
C
r
{
f
(
x
,
ξ
)
≥
f
ˉ
}
≥
β
C
r
{
g
i
(
x
,
ξ
)
≤
0
,
j
=
1
,
2
,
…
,
p
}
≥
α
\max \bar{f}\\ s.t. \begin{cases} Cr\{f(x, \xi)\geq \bar{f}\}\geq \beta\\ Cr\{g_i(x, \xi)\leq 0, j=1, 2, \dots, p\}\geq \alpha \end{cases}
maxfˉs.t.{Cr{f(x,ξ)≥fˉ}≥βCr{gi(x,ξ)≤0,j=1,2,…,p}≥α
其中
α
\alpha
α和
β
\beta
β為預先給定的置信水平,該模型可以等價於如下max-max
形式,其中
f
ˉ
\bar{f}
fˉ為樂觀值
max
x
max
f
ˉ
s
.
t
.
{
C
r
{
f
(
x
,
ξ
)
≥
f
ˉ
}
≥
β
C
r
{
g
j
(
x
,
ξ
)
≤
0
,
j
=
1
,
2
,
…
,
p
}
≥
α
\max_x\max \bar{f}\\ s.t. \begin{cases} Cr\{f(x, \xi)\geq \bar{f}\}\geq \beta\\ Cr\{g_j(x, \xi)\leq 0, j=1, 2, \dots, p\}\geq \alpha \end{cases}
xmaxmaxfˉs.t.{Cr{f(x,ξ)≥fˉ}≥βCr{gj(x,ξ)≤0,j=1,2,…,p}≥α
多目標決策模型為
max
x
[
max
f
ˉ
1
f
ˉ
1
,
max
f
ˉ
1
f
ˉ
2
,
…
,
max
f
ˉ
m
f
ˉ
m
]
s
.
t
.
{
C
r
{
f
i
(
x
,
ξ
)
≥
f
ˉ
i
}
≥
β
ˉ
i
,
i
=
1
,
2
,
…
,
m
C
r
{
g
j
(
x
,
ξ
)
≤
0
}
≥
α
j
,
j
=
1
,
2
,
…
,
p
\max_x\bigg[ \max_{\bar{f}_1}\bar{f}_1, \max_{\bar{f}_1}\bar{f}_2, \dots,\max_{\bar{f}_m}\bar{f}_m\bigg]\\ s.t. \begin{cases} Cr\{f_i(x, \xi)\geq \bar{f}_i\}\geq \bar{\beta}_i, i=1, 2, \dots, m\\ Cr\{g_j(x, \xi)\leq 0\}\geq \alpha_j, j=1, 2, \dots, p \end{cases}
xmax[fˉ1maxfˉ1,fˉ1maxfˉ2,…,fˉmmaxfˉm]s.t.{Cr{fi(x,ξ)≥fˉi}≥βˉi,i=1,2,…,mCr{gj(x,ξ)≤0}≥αj,j=1,2,…,p
根據目標的優先結構和目標水平,還可以構建如下機會約束的目標規劃
min
∑
j
=
1
l
P
j
∑
i
=
1
m
(
u
i
j
d
i
+
+
v
i
j
d
i
−
)
s
.
t
.
{
C
r
{
f
i
(
x
,
ξ
)
}
−
b
i
≤
d
i
+
}
≥
β
i
+
C
r
{
b
i
−
f
i
(
x
,
ξ
)
≤
d
i
−
}
≥
β
i
−
C
r
{
g
j
(
x
,
ξ
)
≤
0
}
≥
α
j
d
i
+
,
d
i
−
≥
0
\min \sum_{j=1}^l P_j\sum_{i=1}^m(u_{ij}d_i^++v_{ij}d_i^- )\\ s.t. \begin{cases} Cr\{f_i(x, \xi)\}-b_i\leq d_i^+\}\geq \beta_i^+\\ Cr\{b_i-f_i(x, \xi)\leq d_i^-\}\geq \beta_i^-\\ Cr\{g_j(x, \xi)\leq 0\}\geq \alpha_j\\ d_i^+, d_i^-\geq 0 \end{cases}
minj=1∑lPji=1∑m(uijdi++vijdi−)s.t.⎩⎪⎪⎪⎨⎪⎪⎪⎧Cr{fi(x,ξ)}−bi≤di+}≥βi+Cr{bi−fi(x,ξ)≤di−}≥βi−Cr{gj(x,ξ)≤0}≥αjdi+,di−≥0
在模糊向量退化為清晰向量時,置信水平約束條件退化為
d
i
+
=
[
f
i
(
x
,
ξ
)
−
b
i
]
∨
0
d
i
−
=
[
b
i
−
f
i
(
x
,
ξ
)
]
∨
0
d_i^+=[f_i(x, \xi)-b_i]\vee 0\\ d_i^-=[b_i-f_i(x, \xi)]\vee 0
di+=[fi(x,ξ)−bi]∨0di−=[bi−fi(x,ξ)]∨0
Minimax機會約束規劃
和Robust optimization
中的worst case
思想一致,可以考慮極大化目標函式的悲觀值
max
x
min
f
ˉ
s
.
t
.
{
C
r
{
f
(
x
,
ξ
)
≤
f
ˉ
}
≥
β
C
r
{
g
j
(
x
,
ξ
)
≤
0
,
j
=
1
,
2
,
…
,
p
}
≥
α
\max_x\min \bar{f}\\ s.t. \begin{cases} Cr\{f(x, \xi)\leq \bar{f}\}\geq \beta\\ Cr\{g_j(x, \xi)\leq 0, j=1, 2, \dots, p\}\geq \alpha \end{cases}
xmaxminfˉs.t.{Cr{f(x,ξ)≤fˉ}≥βCr{gj(x,ξ)≤0,j=1,2,…,p}≥α
同樣可以推匯出多目標的情況
max
x
[
min
f
ˉ
1
,
min
f
ˉ
2
,
…
,
min
f
ˉ
m
]
s
.
t
.
{
C
r
{
f
i
(
x
,
ξ
)
≤
f
ˉ
i
}
≥
β
i
C
r
{
g
j
(
x
,
ξ
)
≤
0
,
j
=
1
,
2
,
…
,
p
}
≥
α
j
\max_x\bigg[\min \bar{f}_1, \min \bar{f}_2, \dots, \min\bar{f}_m\bigg]\\ s.t. \begin{cases} Cr\{f_i(x, \xi)\leq \bar{f}_i\}\geq \beta_i\\ Cr\{g_j(x, \xi)\leq 0, j=1, 2, \dots, p\}\geq \alpha_j \end{cases}
xmax[minfˉ1,minfˉ2,…,minfˉm]s.t.{Cr{fi(x,ξ)≤fˉi}≥βiCr{gj(x,ξ)≤0,j=1,2,…,p}≥αj
定理
設
f
P
,
f
N
,
f
C
f_P, f_N, f_C
fP,fN,fC分別是在Pos
,Nec
和Cr
測度下的目標最優值,則關係
f
N
≤
f
C
≤
f
P
f_N\leq f_C\leq f_P
fN≤fC≤fP
成立.
根據定義可以推匯出
f
C
=
max
x
∈
S
C
max
f
ˉ
{
f
ˉ
∣
C
r
{
f
(
x
,
ξ
)
≥
f
ˉ
}
≥
β
}
≤
max
x
∈
S
C
max
f
ˉ
{
f
ˉ
∣
P
o
s
{
f
(
x
,
ξ
)
≥
f
ˉ
}
≥
β
}
≤
max
x
∈
S
P
max
f
ˉ
{
f
ˉ
∣
P
o
s
{
f
(
x
,
ξ
)
}
≥
f
ˉ
}
≥
β
}
=
f
P
\begin{aligned} f_C&=\max_{x\in S_C}\max_{\bar{f}}\{\bar{f}\mid Cr\{f(x, \xi)\geq \bar{f}\}\geq \beta\}\\ &\leq \max_{x\in S_C}\max_{\bar{f}}\{\bar{f}\mid Pos\{f(x, \xi)\geq \bar{f}\}\geq \beta \}\\ &\leq \max_{x\in S_P}\max_{\bar{f}}\{\bar{f}\mid Pos\{f(x, \xi)\}\geq \bar{f}\}\geq \beta\}\\ &=f_P \end{aligned}
fC=x∈SCmaxfˉmax{fˉ∣Cr{f(x,ξ)≥fˉ}≥β}≤x∈SCmaxfˉmax{fˉ∣Pos{f(x,ξ)≥fˉ}≥β}≤x∈SPmaxfˉmax{fˉ∣Pos{f(x,ξ)}≥fˉ}≥β}=fP
根據Hurwicz
準則,對maximax
和minimax
模型分別賦予
λ
\lambda
λ和
1
−
λ
1-\lambda
1−λ的權重,其中
λ
\lambda
λ表示悲觀程度
max
λ
f
min
+
(
1
−
λ
)
f
max
s
.
t
.
P
o
s
/
N
e
c
/
C
r
{
g
j
(
x
,
ξ
)
≤
0
,
j
=
1
,
2
,
…
,
p
}
≥
α
\max \lambda f_{\min}+(1-\lambda)f_{\max}\\ s.t.\quad Pos/Nec/Cr\{g_j(x, \xi)\leq 0, j=1, 2, \dots, p\}\geq \alpha
maxλfmin+(1−λ)fmaxs.t.Pos/Nec/Cr{gj(x,ξ)≤0,j=1,2,…,p}≥α
參考文獻
不確定規劃 清華大學出版社
Portfolio selection with coherent investor’s expectations under uncertainty
相關文章
- 資料標準規劃有哪些規劃
- 出行規劃
- 【動態規劃(一)】動態規劃基礎動態規劃
- 線性規劃模型複習總結模型
- 資訊化業務規劃與技術體系規劃
- 學習規劃
- 軌跡規劃理解
- 動態規劃動態規劃
- 未來規劃
- 動態規劃-最長上升子序列模型動態規劃模型
- 運籌優化(九)--整數規劃模型優化模型
- ERP的核心——線性規劃模型(轉)模型
- 路徑規劃: 淺談路徑規劃演算法演算法
- 元規劃:使用規劃器解決數學問題
- app開發的規劃與籌劃APP
- 動態規劃之數的劃分動態規劃
- 動態規劃分析動態規劃
- Elasticsearch 叢集規劃Elasticsearch
- 動態規劃(DP)動態規劃
- 機器學習入門規劃機器學習
- 產品版本規劃
- 不要濫用IT規劃
- DB儲存規劃
- 動態規劃初步動態規劃
- 模板 - 動態規劃動態規劃
- 動態規劃法動態規劃
- 11.5日規劃
- 01 分數規劃
- 01分數規劃
- 關於 線性規劃 非線性規劃 與 凸優化優化
- 為什麼你學不過動態規劃?告別動態規劃,談談我的經驗動態規劃
- 整數劃分問題(動態規劃)動態規劃
- 演算法系列-動態規劃(1):初識動態規劃演算法動態規劃
- 資訊系統專案規劃和產品規劃的差異
- 4.2.1.12 規劃 Oracle RACOracle
- 4.2.1.2 規劃物理結構
- Excel中的規劃求解。Excel
- 淺談動態規劃動態規劃