6-12 二叉搜尋樹的操作集

hayhead發表於2020-11-21

6-12 二叉搜尋樹的操作集 (30分)

本題要求實現給定二叉搜尋樹的5種常用操作。
函式介面定義:

 BinTree Insert( BinTree BST, ElementType X );
 BinTree Delete( BinTree BST, ElementType X );
 Position Find( BinTree BST, ElementType X );
 Position FindMin( BinTree BST );
 Position FindMax( BinTree BST );

其中BinTree結構定義如下:

 typedef struct TNode *Position;
 typedef Position BinTree;
 struct TNode{
     ElementType Data;
     BinTree Left;
     BinTree Right;
 };
  • 函式Insert將X插入二叉搜尋樹BST並返回結果樹的根結點指標;
  • 函式Delete將X從二叉搜尋樹BST中刪除,並返回結果樹的根結點- - 指標;如果X不在樹中,則列印一行Not Found並返回原樹的根結點指標;
  • 函式Find在二叉搜尋樹BST中找到X,返回該結點的指標;如果找不到則返回空指標;
  • 函式FindMin返回二叉搜尋樹BST中最小元結點的指標;
  • 函式FindMax返回二叉搜尋樹BST中最大元結點的指標。

裁判測試程式樣例:

 #include <stdio.h>
 #include <stdlib.h>

 typedef int ElementType;
 typedef struct TNode *Position;
 typedef Position BinTree;
 struct TNode{
     ElementType Data;
     BinTree Left;
     BinTree Right;
 };

 void PreorderTraversal( BinTree BT ); /* 先序遍歷,由裁判實現,細節不表 */
 void InorderTraversal( BinTree BT );  /* 中序遍歷,由裁判實現,細節不表 */

 BinTree Insert( BinTree BST, ElementType X );
 BinTree Delete( BinTree BST, ElementType X );
 Position Find( BinTree BST, ElementType X );
 Position FindMin( BinTree BST );
 Position FindMax( BinTree BST );

 int main()
 {
     BinTree BST, MinP, MaxP, Tmp;
     ElementType X;
     int N, i;

    BST = NULL;
    scanf("%d", &N);
    for ( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Insert(BST, X);
    }
    printf("Preorder:"); PreorderTraversal(BST); printf("\n");
    MinP = FindMin(BST);
    MaxP = FindMax(BST);
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        Tmp = Find(BST, X);
        if (Tmp == NULL) printf("%d is not found\n", X);
        else {
            printf("%d is found\n", Tmp->Data);
            if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
            if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
        }
    }
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Delete(BST, X);
    }
    printf("Inorder:"); InorderTraversal(BST); printf("\n");

    return 0;
}

/* 你的程式碼將被嵌在這裡 */

輸入樣例:

10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3

輸出樣例:

Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9

二叉樹的建立,這裡就不貼了
AC程式碼:


BinTree Insert( BinTree BST, ElementType X )  // 插入建立二叉搜尋樹
{
    if(!BST)
    {
        BST = (BinTree)malloc(sizeof(struct TNode));
        BST->Data = X;
        BST->Left = NULL;
        BST->Right= NULL;
    }
    else
    {
        if(X < BST->Data) BST->Left = Insert(BST->Left,X);
        if(X > BST->Data) BST->Right= Insert(BST->Right,X);
    }
    return BST;
}
BinTree Delete( BinTree BST, ElementType X )
{
    BinTree t;
    if(!BST) printf("Not Found\n");
    else
    {
        if( X < BST->Data) BST->Left = Delete(BST->Left,X);    //當前值小於結點值,在左子樹下
        else if(X > BST->Data) BST->Right = Delete(BST->Right,X);  //當前值大於結點值,在右子樹下
        else  //已找到要刪除的結點
        {
            if(BST->Left && BST->Right)   //刪除的結點有左右子結點
            {
                t = FindMin(BST->Right);  //從右子樹中找出最小的元素填充要刪除的結點
                BST->Data = t->Data;
                BST->Right = Delete(BST->Right,BST->Data);  //遞迴從右子樹中刪除最小元素
            }
            else   // 刪除的結點有1個或0個子節點
            {
                t = BST; 
                if(!BST->Left) BST = BST->Right;  //只有右子結點或無子結點
                else    BST = BST->Left;  //只有左子結點或無子結點
                free(t);
            }
        }
    }
    return BST;
}
Position Find( BinTree BST, ElementType X )
{
    while(BST)
    {
        if(X > BST->Data) BST = BST->Right;
        else if(X < BST->Data) BST = BST->Left;
        else break;
    }
    return BST;
}
Position FindMin( BinTree BST )
{
    if( !BST ) return NULL;
    else if(!BST->Left) return BST;
    else return FindMin(BST->Left);
}
Position FindMax( BinTree BST )
{
   if(BST)
   {
     while(BST->Right) BST = BST->Right;
   }
   return BST;
}

相關文章