- 支援數學公式
行內公式也是$$...$$
,Katex語法和Latex雖稍有差別,但不是很大
評論區也完美支援就很贊?
我只想說PHP可能就是世界上最好的程式語言 - 圖片自動匯入也太牛逼了吧!
下面列出了常用的公式
\begin{aligned}
(\mu(d)\cdot d) \cdot Id(d)
& = \sum_{d|n}(\mu(d)\cdot d)\cdot Id(\frac{n}{d}) \\
& = \sum_{d|n}\mu(d)\\
& = [n=1]
\end{aligned}
x \in \mathbb{R}\setminus\mathbb{Q}
\begin{aligned}
V^*(s) &= \max_a \Big( \underbrace{r(s, a) + \gamma V^(s’)}_{=Q^(s, a)} \Big)
\end{aligned}
f(n) = \begin{cases} \dfrac{n}{2}, &\text{if } n \text { is even} \\ 3n+1, &\text{if } n \text{ is odd} \end{cases}
\begin{aligned}
V^*(s) &= \max_a \Big( \underbrace{r(s, a) + \gamma V^(s’)}_{=Q^(s, a)} \Big)
\end{aligned}
g(1)S(n)=\sum\limits_{i=1}^n(f\cdot g)(i)-\sum\limits_{i=2}^ng(i)S(\lfloor\dfrac{n}{i}\rfloor)
f(x) = \displaystyle \int_{-\infty}^\infty
\hat f(\xi)\ e^{2 \pi i \xi x}
\ d\xi
\displaystyle x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}
{\color{Blue}x^2}+{\color{Orange}2x}-{\color{OliveGreen}1}
c = \pm\sqrt{a^2 + b^2}
\alpha = \sqrt{1-e^2}
(\sqrt{3x-1}+(1+x)^2)
\sin(\alpha)^{\theta}=\sum\limits_{i=0}^{n}(x^i + \cos(f))
\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}
f(x) = \displaystyle \int_{-\infty}^\infty\hat f(\xi),e^{2 \pi i \xi x},d\xi
\displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }
\displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
\frac{1}{2}=0.5
\dfrac{k}{k-1} = 0.5
\dbinom{n}{k} \binom{n}{k}
\displaystyle \oint_C x^3, dx + 4y^2, dy
\displaystyle \bigcap_1^n p \bigcup_1^k p
e^{i \pi} + 1 = 0
\displaystyle \left ( \frac{1}{2} \right )
\textstyle \displaystyle \sum_{k=1}^N k^2
\dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] }{ 1-\tfrac{1}{2} } = s_n
\displaystyle \binom{n}{k}
\displaystyle \sum_{k=1}^N k^2
\textstyle \sum_{k=1}^N k^2
\displaystyle \prod_{i=1}^N x_i
\textstyle \prod_{i=1}^N x_i
\displaystyle \coprod_{i=1}^N x_i
\textstyle \coprod_{i=1}^N x_i
\displaystyle \int_{1}^{3}\frac{e^3/x}{x^2}, dx
\displaystyle \int_C x^3, dx + 4y^2, dy
{}_1^2!\Omega_3^4
a^x=y
本作品採用《CC 協議》,轉載必須註明作者和本文連結