前言
雙元法是近些年來網路上流傳出的一種求解不定積分的新方式,其既有準確得值、計算簡便的快捷性,又在傳統的第一類、第二類換元積分法的基礎上有所創新,給我們提供了另一個視角看待不定積分求解的思維歷程. 尤其用在考研時該方法的正確使用亦可在作答試卷時起到事半功倍的效果,特此深入研究了一下該方法,以個人見解對其總結匯集於此.
例題引入
例1. 求\(\int\sqrt{x^2+a^2}\mathrm{d}x\).
解1. [第二類換元積分法]
\[\int\sqrt{x^2+a^2}\mathrm{d}x = a\int\sqrt{(\frac{x}{a})^2+1}\mathrm{d}x = a^2\int\sqrt{(\frac{x}{a})^2+1}\mathrm{d}(\frac{x}{a}).
\]
利用三角換元,\(\mathrm{tan}\theta = \frac{x}{a}\),則\(\mathrm{sec}\theta = \sqrt{\mathrm{tan}^2\theta+1} = \frac{\sqrt{x^2+a^2}}{a}\).
則
\[\int\sqrt{x^2+a^2}\mathrm{d}x = a^2\int\mathrm{sec}\theta\mathrm{d}\mathrm{tan}\theta
\]
\[= a^2\mathrm{sec}\theta\mathrm{tan}\theta-a^2\int\mathrm{tan}\theta\mathrm{d}\mathrm{sec}\theta
\]
\[= a^2\mathrm{sec}\theta\mathrm{tan}\theta-a^2\int\mathrm{tan}^2\theta\mathrm{sec}\theta\mathrm{d}\theta
\]
\[= a^2\mathrm{sec}\theta\mathrm{tan}\theta-a^2\int(\mathrm{sec}^2\theta-1)\mathrm{sec}\theta\mathrm{d}\theta
\]
\[= a^2\mathrm{sec}\theta\mathrm{tan}\theta-a^2\int\mathrm{sec}^3\theta\mathrm{d}\theta+a^2\int\mathrm{sec}\theta\mathrm{d}\theta.
\]
注意到
\[\int\sqrt{x^2+a^2}\mathrm{d}x = a^2\int\mathrm{sec}\theta\mathrm{d}\mathrm{tan}\theta
\]
\[= a^2\int\mathrm{sec}^3\theta\mathrm{d}\theta,
\]
故移項得
\[2a^2\int\mathrm{sec}\theta\mathrm{d}\mathrm{tan}\theta = a^2\mathrm{sec}\theta\mathrm{tan}\theta+a^2\int\mathrm{sec}\theta\mathrm{d}\theta,
\]
從而
\[\int\sqrt{x^2+a^2}\mathrm{d}x = a^2\int\mathrm{sec}\theta\mathrm{d}\mathrm{tan}\theta = \frac{a^2}{2}\mathrm{sec}\theta\mathrm{tan}\theta+\frac{a^2}{2}\int\mathrm{sec}\theta\mathrm{d}\theta
\]
\[= \frac{a^2}{2}\mathrm{sec}\theta\mathrm{tan}\theta+\frac{a^2}{2}\mathrm{ln}\left|\mathrm{tan}\theta+\mathrm{sec}\theta\right|+C
\]
\[= \frac{a^2}{2}\cdot\frac{x}{a}\cdot\frac{\sqrt{x^2+a^2}}{a}+\frac{a^2}{2}\mathrm{ln}\left|\frac{x}{a}+\frac{\sqrt{x^2+a^2}}{a}\right|+C
\]
\[= \frac{x\sqrt{x^2+a^2}}{2}+\frac{a^2}{2}\mathrm{ln}(x+\sqrt{x^2+a^2})+C.\]
(注意\(-\frac{a^2}{2}\mathrm{ln}\left|a\right|\)已併入常數項\(C\)中;由於\(\sqrt{x^2+a^2}+x\)恆為正,故去掉絕對值符號. )
解2. [雙元虛圓換元法] 令\(y = \sqrt{x^2+a^2}\),易得\(y^2-x^2 = a^2\),從而\(y\mathrm{d}y=x\mathrm{d}x\).
故
\[\int\sqrt{x^2+a^2}\mathrm{d}x = \int y\mathrm{d}x
\]
\[= xy-\int x\mathrm{d}y
\]
\[= xy-\int\frac{x^2\mathrm{d}x}{y}
\]
\[= xy-\int\frac{(y^2-a^2)\mathrm{d}x}{y}
\]
\[= xy-\int y\mathrm{d}x+a^2\int\frac{\mathrm{d}x}{y},
\]
移項得
\[2\int y\mathrm{d}x = xy+a^2\int\frac{\mathrm{d}x}{y},
\]
\[\int y\mathrm{d}x = \frac{xy}{2}+\frac{a^2}{2}\int\frac{\mathrm{d}x}{y}.
\]
因\(y\mathrm{d}y=x\mathrm{d}x\),故\(\frac{\mathrm{d}x}{y}=\frac{\mathrm{d}y}{x}\),由合比定理有\(\frac{\mathrm{d}x}{y}=\frac{\mathrm{d}y}{x}=\frac{\mathrm{d}x+\mathrm{d}y}{x+y}=\frac{\mathrm{d}(x+y)}{x+y}=\mathrm{d}\mathrm{ln}(x+y)\)(此處絕對值符號可去,原因同解1).
故
\[\int\sqrt{x^2+a^2}\mathrm{d}x = \frac{xy}{2}+\frac{a^2}{2}\int\frac{\mathrm{d}x}{y}
\]
\[= \frac{xy}{2}+\frac{a^2}{2}\mathrm{ln}(x+y)+C.
\]
將\(y = \sqrt{x^2+a^2}\)代入得
\[\int\sqrt{x^2+a^2}\mathrm{d}x = \frac{x\sqrt{x^2+a^2}}{2}+\frac{a^2}{2}\mathrm{ln}(x+\sqrt{x^2+a^2})+C.
\]
方法總結:不定積分的雙元換元法
一般地,我們將解不定積分的雙元換元法分為兩種型別(其中\(C\)為常實數):
- 型別1. 實圓雙元:\(x^2+y^2=C \Leftrightarrow x\mathrm{d}x=-y\mathrm{d}y\).
- 型別2. 虛圓雙元:\(x^2-y^2=C \Leftrightarrow x\mathrm{d}x=y\mathrm{d}y\).
對於以上兩型別雙元換元,我們有以下公式(由於常數\(C\)已在上兩式中使用,故接下來積分常數用\(C_0\)表示):
1. 雙元第一公式
- (1) 對於實圓雙元,\(\int\frac{\mathrm{d}x}{y} = \mathrm{arctan}\frac{y}{x}+C_0\);
- (2) 對於虛圓雙元,\(\int\frac{\mathrm{d}x}{y} = \mathrm{ln}\left|x+y\right|+C_0\).
證明. (1) 由於\(y\mathrm{d}y=-x\mathrm{d}x\),故
\[y\mathrm{d}x-x\mathrm{d}y=y\mathrm{d}x-x\cdot\frac{x\mathrm{d}x}{y}=\frac{(y^2+x^2)\mathrm{d}x}{y}
\]
故
\[\mathrm{d}x = \frac{y(y\mathrm{d}x-x\mathrm{d}y)}{x^2+y^2}
\]
故
\[\int\frac{\mathrm{d}x}{y} = \int\frac{1}{y}\cdot\frac{y(y\mathrm{d}x-x\mathrm{d}y)}{x^2+y^2}
\]
\[= \int\frac{y\mathrm{d}x-x\mathrm{d}y}{x^2+y^2},
\]
又由於
\[\mathrm{d}(\frac{x}{y}) = \frac{y\mathrm{d}x-x\mathrm{d}y}{y^2},
\]
故
\[\int\frac{\mathrm{d}x}{y} = \int\frac{y^2}{y^2+x^2}\cdot\mathrm{d}(\frac{x}{y})
\]
\[= \int\frac{1}{(\frac{x}{y})^2+1}\cdot\mathrm{d}(\frac{x}{y})
\]
\[= \mathrm{arctan}\frac{x}{y}+C_0.
\]
(2) 因\(y\mathrm{d}y=x\mathrm{d}x\),故\(\frac{\mathrm{d}x}{y}=\frac{\mathrm{d}y}{x}\),由合比定理有\(\frac{\mathrm{d}x}{y}=\frac{\mathrm{d}y}{x}=\frac{\mathrm{d}x+\mathrm{d}y}{x+y}=\frac{\mathrm{d}(x+y)}{x+y}=\mathrm{d}\mathrm{ln}\left|x+y\right|\).
故
\[\int\frac{\mathrm{d}x}{y} = \int\mathrm{d}\mathrm{ln}\left|x+y\right|
\]
\[= \mathrm{ln}\left|x+y\right|+C_0.
\]
2. 雙元第三公式
- (1) 對於實圓雙元,\(\int\frac{\mathrm{d}x}{y^3} = \frac{1}{y^2+x^2}\cdot\frac{x}{y}+C_0 = \frac{x}{Cy}+C_0\);
- (2) 對於虛圓雙元,\(\int\frac{\mathrm{d}x}{y^3} = \frac{1}{y^2-x^2}\cdot\frac{x}{y}+C_0 = -\frac{x}{Cy}+C_0\).
證明. (1) 類似雙元第一公式的證法,
\[\int\frac{\mathrm{d}x}{y^3} = \int\frac{1}{y^2}\cdot\frac{\mathrm{d}x}{y}
\]
\[= \int\frac{1}{y^2}\cdot\frac{y\mathrm{d}x-x\mathrm{d}y}{x^2+y^2}
\]
\[= \int\frac{1}{x^2+y^2}\cdot\frac{y\mathrm{d}x-x\mathrm{d}y}{y^2}
\]
\[= \int\frac{1}{x^2+y^2}\cdot\mathrm{d}(\frac{x}{y})
\]
\[= \frac{1}{x^2+y^2}\cdot\frac{x}{y}+C_0
\]
\[= \frac{x}{Cy}+C_0.
\]
(2) 由於
\[x\mathrm{d}x=y\mathrm{d}y,
\]
故
\[\mathrm{d}y=\frac{x\mathrm{d}x}{y},
\]
故
\[y\mathrm{d}x-x\mathrm{d}y = y\mathrm{d}x-x\cdot\frac{x\mathrm{d}x}{y}
\]
\[= \frac{(y^2-x^2)\mathrm{d}x}{y},
\]
故
\[\mathrm{d}x = \frac{y(y\mathrm{d}x-x\mathrm{d}y)}{y^2-x^2},
\]
故
\[\int\frac{\mathrm{d}x}{y^3} = \int\frac{1}{y^3}\cdot\frac{y(y\mathrm{d}x-x\mathrm{d}y)}{y^2-x^2}
\]
\[= \int\frac{y\mathrm{d}x-x\mathrm{d}y}{y^2(y^2-x^2)}
\]
\[= \int\frac{1}{y^2-x^2}\mathrm{d}(\frac{x}{y})
\]
\[= \frac{1}{y^2-x^2}\cdot\frac{x}{y}+C_0
\]
\[= -\frac{x}{Cy}+C_0.
\]
3. 雙元第二公式
注:此公式的形式已在例1中解2的過程中給出,此處總結一般情形.
- (1) 對於實圓雙元,\(\int y\mathrm{d}x = \frac{xy}{2}+\frac{x^2+y^2}{2}\int\frac{\mathrm{d}x}{y} = \frac{xy}{2}+\frac{C}{2}\int\frac{\mathrm{d}x}{y}\);
- (2) 對於虛圓雙元,\(\int y\mathrm{d}x = \frac{xy}{2}-\frac{x^2-y^2}{2}\int\frac{\mathrm{d}x}{y} = \frac{xy}{2}-\frac{C}{2}\int\frac{\mathrm{d}x}{y}\).
這裡每一個結論均有兩種證法,其中分部積分法即為例1中解2的過程所用形式.
證明. (1) [證法一 - 分部積分法] 由於
\[\int y\mathrm{d}x = xy-\int x\mathrm{d}y
\]
\[= xy-\int x\cdot(-\frac{x\mathrm{d}x}{y})
\]
\[= xy+\int \frac{x^2\mathrm{d}x}{y}
\]
\[= xy+\int \frac{C-y^2}{y}\mathrm{d}x
\]
\[= xy+C\int \frac{\mathrm{d}x}{y}-\int y\mathrm{d}x,
\]
故移項得
\[2\int y\mathrm{d}x = xy+C\int \frac{\mathrm{d}x}{y},
\]
\[\int y\mathrm{d}x = \frac{xy}{2}+\frac{C}{2}\int \frac{\mathrm{d}x}{y}
\]
\[= \frac{xy}{2}+\frac{x^2+y^2}{2}\int \frac{\mathrm{d}x}{y}.
\]
[證法二 - 二分裂項法]
\[\int y\mathrm{d}x = \frac{1}{2}\int y\mathrm{d}x-\frac{1}{2}\int(-y\mathrm{d}x)
\]
\[= \frac{1}{2}\int(x\mathrm{d}y+y\mathrm{d}x)-\frac{1}{2}\int(x\mathrm{d}y-y\mathrm{d}x)
\]
\[= \frac{1}{2}\int\mathrm{d}(xy)+\frac{1}{2}\int(y\mathrm{d}x-x\mathrm{d}y)
\]
\[= \frac{1}{2}xy+\frac{1}{2}\int(y\mathrm{d}x-x(-\frac{x\mathrm{d}y}{y}))
\]
\[= \frac{1}{2}xy+\frac{1}{2}\int\frac{x^2+y^2}{y}\mathrm{d}x
\]
\[= \frac{xy}{2}+\frac{x^2+y^2}{2}\int\frac{\mathrm{d}x}{y}
\]
\[= \frac{xy}{2}+\frac{C}{2}\int\frac{\mathrm{d}x}{y}.
\]
(2) [證法一 - 分部積分法] 由於
\[\int y\mathrm{d}x = xy-\int x\mathrm{d}y
\]
\[= xy-\int x\cdot\frac{x\mathrm{d}x}{y}
\]
\[= xy-\int \frac{x^2\mathrm{d}x}{y}
\]
\[= xy-\int \frac{C+y^2}{y}\mathrm{d}x
\]
\[= xy-C\int \frac{\mathrm{d}x}{y}-\int y\mathrm{d}x,
\]
故移項得
\[2\int y\mathrm{d}x = xy-C\int \frac{\mathrm{d}x}{y},
\]
\[\int y\mathrm{d}x = \frac{xy}{2}-\frac{C}{2}\int \frac{\mathrm{d}x}{y}
\]
\[= \frac{xy}{2}-\frac{x^2-y^2}{2}\int \frac{\mathrm{d}x}{y}.
\]
[證法二 - 二分裂項法]
\[\int y\mathrm{d}x = \frac{1}{2}\int y\mathrm{d}x-\frac{1}{2}\int(-y\mathrm{d}x)
\]
\[= \frac{1}{2}\int(x\mathrm{d}y+y\mathrm{d}x)-\frac{1}{2}\int(x\mathrm{d}y-y\mathrm{d}x)
\]
\[= \frac{1}{2}\int\mathrm{d}(xy)+\frac{1}{2}\int(y\mathrm{d}x-x\mathrm{d}y)
\]
\[= \frac{1}{2}xy+\frac{1}{2}\int(y\mathrm{d}x-x\cdot\frac{x\mathrm{d}y}{y})
\]
\[= \frac{1}{2}xy+\frac{1}{2}\int\frac{y^2-x^2}{y}\mathrm{d}x
\]
\[= \frac{xy}{2}+\frac{y^2-x^2}{2}\int\frac{\mathrm{d}x}{y}
\]
\[= \frac{xy}{2}-\frac{x^2-y^2}{2}\int\frac{\mathrm{d}x}{y}
\]
\[= \frac{xy}{2}+\frac{C}{2}\int\frac{\mathrm{d}x}{y}.
\]
4. 雙元點火公式
注:本公式的用途類似於 Wallis 公式,用於降低被積函式的次數以最終化為雙元第一公式或雙元第三公式的形式並得出待求式的結果.
對於實圓雙元與虛圓雙元,均有\((1+n)\int x^n\mathrm{d}y = x^ny+Cn\int x^{n-2}\mathrm{d}y\).
證明. 先證實圓雙元.
\[\int x^n\mathrm{d}y = x^ny-\int y\mathrm{d}(x^n)
\]
\[= x^ny-n\int yx^{n-1}\mathrm{d}x
\]
\[= x^ny-n\int yx^{n-1}\cdot(-\frac{y\mathrm{d}y}{x})
\]
\[= x^ny+n\int y^2x^{n-2}\mathrm{d}y
\]
\[= x^ny+n\int (C-x^2)x^{n-2}\mathrm{d}y
\]
\[= x^ny+Cn\int x^{n-2}\mathrm{d}y-n\int x^n\mathrm{d}y,
\]
移項即得
\[(1+n)\int x^n\mathrm{d}y = x^ny+Cn\int x^{n-2}\mathrm{d}y.
\]
再證虛圓雙元.
\[\int x^n\mathrm{d}y = x^ny-\int y\mathrm{d}(x^n)
\]
\[= x^ny-n\int yx^{n-1}\mathrm{d}x
\]
\[= x^ny-n\int yx^{n-1}\cdot\frac{y\mathrm{d}y}{x}
\]
\[= x^ny-n\int y^2x^{n-2}\mathrm{d}y
\]
\[= x^ny-n\int (x^2-C)x^{n-2}\mathrm{d}y
\]
\[= x^ny+Cn\int x^{n-2}\mathrm{d}y-n\int x^n\mathrm{d}y,
\]
移項即得
\[(1+n)\int x^n\mathrm{d}y = x^ny+Cn\int x^{n-2}\mathrm{d}y.
\]
方法運用:運用雙元換元法求解不定積分
例2. 求 \(\int\sqrt{\frac{x-a}{x-b}}\mathrm{d}x\),其中\(a,b\in\mathbb{R}\)為常數.
解. 令\(u = \sqrt{x-a}\),\(v = \sqrt{x-b}\),易得\(u^2-v^2=b-a=C\)為常數(虛元雙元),
則
\[\int\sqrt{\frac{x-a}{x-b}}\mathrm{d}x = \int\frac{u}{v}\mathrm{d}(u^2+a)
\]
\[= \int\frac{2u^2\mathrm{d}u}{v}
\]
\[= 2\int\frac{C+v^2}{v}\mathrm{d}u
\]
\[= 2C\int\frac{\mathrm{d}u}{v}+2\int v\mathrm{d}u,
\]
依次代入虛元雙元的雙元第二、第一公式可得
\[\int\sqrt{\frac{x-a}{x-b}}\mathrm{d}x = 2C\int\frac{\mathrm{d}u}{v}+2(\frac{xy}{2}-\frac{C}{2}\int\frac{\mathrm{d}u}{v})
\]
\[= C\int \frac{\mathrm{d}u}{v}+uv
\]
\[= C\mathrm{ln}\left|u+v\right|+uv+C_0
\]
\[= (b-a)\mathrm{ln}\left|\sqrt{x-a}+\sqrt{x-b}\right|+\sqrt{(x-a)(x-b)}+C_0.
\]
例3. 求 \(\int\sqrt{\frac{x-a}{b-x}}\mathrm{d}x\),其中\(a,b\in\mathbb{R}\)為常數.
解. 令\(u = \sqrt{x-a}\),\(v = \sqrt{b-x}\),易得\(u^2+v^2=b-a=C\)為常數(實元雙元),
則
\[\int\sqrt{\frac{x-a}{b-x}}\mathrm{d}x = \int\frac{u}{v}\mathrm{d}(u^2+a)
\]
\[= \int\frac{2u^2\mathrm{d}u}{v}
\]
\[= -2\int u(-\frac{u\mathrm{d}u}{v})
\]
\[= -2\int u\mathrm{d}v
\]
\[= -2(uv-\int v\mathrm{d}u)
\]
\[= 2\int v\mathrm{d}u-2uv,
\]
依次代入實元雙元的雙元第二、第一公式可得
\[\int\sqrt{\frac{x-a}{b-x}}\mathrm{d}x = 2(\frac{uv}{2}+\frac{C}{2}\int\frac{\mathrm{d}u}{v})-2uv
\]
\[= C\int\frac{\mathrm{d}u}{v}-uv
\]
\[= C\arctan{\frac{u}{v}}-uv+C_0
\]
\[= (b-a)\arctan{\sqrt{\frac{x-a}{b-x}}}-\sqrt{(x-a)(b-x)}+C_0.
\]