AIxiv專欄是機器之心釋出學術、技術內容的欄目。過去數年,機器之心AIxiv專欄接收報導了2000多篇內容,覆蓋全球各大高校與企業的頂級實驗室,有效促進了學術交流與傳播。如果您有優秀的工作想要分享,歡迎投稿或者聯絡報導。投稿郵箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com
生成式人工智慧研究實驗室(GAIR,主頁:https://plms.ai/)由上海交通大學劉鵬飛副教授2023年4月回國建立,是國內首個聚焦於生成式人工智慧的高校研究組。匯聚了來自於CMU、復旦、交大(ACM班、IEEE試點班等)等頂尖高校的年輕本碩博人才。實驗室專注於三大核心領域:大模型基礎研究、對齊系統和社會影響,致力於培養頂尖人工智慧人才(具有原創、批判精神等)、開發尖端的生成式人工智慧技術,賦能人類解決複雜問題,提升人類生活質量。自LLaMa自迴歸文字生成大模型耀眼登場以來,整個AI界翹首以盼,期待一個能夠真正實現原生、自迴歸圖文生成的開源大模型。17個月的漫長等待,我們見證了以文字為核心的LLaVa的崛起,目睹了基於Diffusion的Dalle的驚豔,卻始終未能一睹那個能夠完美融合文字與影像的模型真容。直到今天,Anole的誕生,終於填補了這一空白,滿足了AI研究者和開發者的殷切期盼,讓每個人都可以用開發LLaMa的方式去開發多模態大模型。想象一下,你只需敲擊幾個鍵盤,就能喚醒一位虛擬大廚,為你展示一道完美煎蛋的每一個精妙步驟。這不再是科幻,而是由上海交通大學GAIR團隊帶來的創新成果——Anole模型。Anole是多模態大模型領域發展的一次重要技術突破,作為全球首個完全開源、自迴歸、原生的(文字與圖片一起從頭訓練)多模態大模型。無需複雜的擴散模型,Anole憑藉純粹的"token"自迴歸預測,就能實現文字與影像的無縫交織。如圖所示,當你在Anole的介面上輸入"用圖片和文字講解煎雞蛋的每一步"時,它會瞬間化身為你的私人廚藝導師。一系列生動形象的步驟圖隨即呈現,每一幅圖都配有清晰明瞭的文字說明,彷彿一位耐心的大廚在為你量身定製教程。這僅僅是Anole眾多強大功能中的一個。接下來,讓我們深入瞭解這個創新的多模態生成模型及其背後的技術。- 專案主頁:https://gair-nlp.github.io/anole
- Github: https://github.com/GAIR-NLP/anole
- Huggingface: https://huggingface.co/GAIR/Anole-7b-v0.1
Anole是首個能夠實現交錯圖文生成的開源、自迴歸、原生訓練的大型多模態模型(無需使用穩定擴散技術)。雖然它建立在Meta 開源的Chameleon[1]的優勢基礎之上,但Anole新增了生成連貫的交替文字和影像序列這一複雜任務。透過使用精心構建的的約6,000張影像資料集進行創新性微調,Anole以最少的額外訓練實現了出色的影像生成和理解能力。這種高效的方法,加上其開源特性,使Anole成為加速多模態AI研究和開發的催化劑。初步測試表明,Anole具有卓越的能力,能夠遵循細緻入微的指令,產生高質量的影像和交錯的文字-影像內容,與使用者提示密切吻合。除了具備常規多模態模型的“文字生成”和“多模態理解”能力外,Anole還展現了出色的圖文交錯生成和文字生成影像的能力。- 文字 → 圖片 + 文字:能夠生成影像並附帶相關文字描述。除開上文中使用Anole以生成一系列煎蛋步驟的圖片並附上相關描述文字的例子外。模型還可以生成其他圖文交錯的資料。這種能力在初步測試中表現良好,能夠生成有意義的影像並準確傳達文字資訊。
指令: A piece of paper with word like "Anole" written on it, and a drawing of an Anole.
生成結果:
指令: An image depicting three cubes stacked on a table. Each cube has a random color and a letter on it.
生成結果:
更多例子:
近年來,多模態AI技術取得了顯著進展,Meta AI推出的Chameleon模型便是其中的代表。Chameleon透過在預訓練期間融合影像和文字語料的方法,展示了在視覺和語言整合方面的潛力。然而,儘管Chameleon具有突破性,其影像生成的關鍵網路引數並未開源,限制了其進一步的研究和實際應用。Chameleon的預訓練資料本身就包含了文字和影像兩種模態,理論上賦予了它影像生成的能力。我們的目標是在不影響其文字理解、生成和多模態理解能力的前提下,啟用這種能力。為實現這一目標,我們凍結了Chameleon的大部分引數,僅對transformer的輸出頭層中與影像token ID對應的logits進行了微調。- 快速高效的微調手段:透過創新的區域性微調方法,只調整不到40m引數,在短時間內(8 個 A100 GPU 上大約 30 分鐘),便成功激發出Chameleon的影像生成能力,使研究人員和開發者能夠充分利用並基於Chameleon的架構進行後續的多模態AI研究工作。
- 少即是多(Less is More)的微調資料:僅需5,859個圖片樣本便可有效激發Chameleon的影像生成能力,展示了在大型多模態模型中恢復複雜功能的高效性。
- 全面的微調和推理程式碼:提供了一整套用於微調、推理Chameleon和Anole的程式碼庫,顯著降低了開發和實驗的門檻。
- 豐富的資源以提升可及性:提供了豐富的資料資源和詳細的教程,旨在幫助各級別的研究人員更容易上手和實驗。
值得注意的是,GAIR團隊已經對 Anole專案進行完全開源(提供了開源的模型權重、推理與訓練程式碼和詳細使用教程),以確保每個感興趣的研究者都能重現這些結果,可以微調模型,建立自己的風格變體。該專案旨在建立和共享一個具有完整圖文理解和生成能力的多模態模型,並透過完全開源實現多模態技術民主化,讓更多人可以加入多模態大模型的開發中。- 模型微調程式碼(基於HuggingFace Trainer)
- 權重轉換程式碼(Hf->Meta & Meta->Hf)
- 與影像生成有關的推理程式碼:包括文生圖以及圖文互動
更重要的是,Anole 為學術界開啟了一系列重要且富有挑戰性的研究方向。具體而言:- 它為探索統一的基於分詞器的多模態模型(token-based)的效能上限提供了新的途徑,使得與擴散模型 (diffusion-based) 等方法的比較成為可能。
- 同時,它推動了高效交錯文字-影像解碼技術的發展,這對實時應用至關重要(比如動漫生成、教材生成)
- 此外,Anole 為探索這類複雜模型的最優微調策略創造了契機,並提出瞭如何確保生成影像安全性和倫理使用等亟待解決的問題。
從根本上說,Anole 不僅是一個強大的工具,更是為未來研究提供了沃土,為 AI 社群構建了一個穩固的資源和基礎設施平臺,使其能夠在此基礎上不斷創新和發展。這種開放的方法有望加速多模態 AI 的進展,有可能帶來突破性成果,而這些成果在過去因缺乏先進模型和技術的獲取途徑而難以實現。[1] Chameleon: Mixed-Modal Early-Fusion Foundation Models, Chameleon, et al.2024