用svm+HOG 訓練檢測器,可以在影像上進行掃描檢測。
#include "stdafx.h"
// mypro.cpp : Defines the entry point for the console application.
//
#include "cv.h"
#include "highgui.h"
#include <ml.h>
#include <iostream>
#include <fstream>
#include <string>
#include <vector>
#define DST_IMG_WIDTH 32
#define DST_IMG_HEIGH 32
using namespace cv;
using namespace std;
class Mysvm: public CvSVM
{
public:
int get_alpha_count()
{
return this->sv_total;
}
int get_sv_dim()
{
return this->var_all;
}
int get_sv_count()
{
return this->decision_func->sv_count;
}
double* get_alpha()
{
return this->decision_func->alpha;
}
float** get_sv()
{
return this->sv;
}
float get_rho()
{
return this->decision_func->rho;
}
};
void Train()
{
char classifierSavePath[256] = "pedestrianDetect-peopleFlow.txt";
//string positivePath = "pos_KC_32X32\\";
//string negativePath = "neg_KC_32X32\\";
int positiveSampleCount = 33;
int negativeSampleCount = 1458;
int totalSampleCount = positiveSampleCount + negativeSampleCount;
cout<<"//"<<endl;
cout<<"totalSampleCount: "<<totalSampleCount<<endl;
cout<<"positiveSampleCount: "<<positiveSampleCount<<endl;
cout<<"negativeSampleCount: "<<negativeSampleCount<<endl;
CvMat *sampleFeaturesMat = cvCreateMat(totalSampleCount , 1764, CV_32FC1);
//64*128的訓練樣本,該矩陣將是totalSample*3780,64*64的訓練樣本,該矩陣將是totalSample*1764
cvSetZero(sampleFeaturesMat);
CvMat *sampleLabelMat = cvCreateMat(totalSampleCount, 1, CV_32FC1);//樣本標識
cvSetZero(sampleLabelMat);
cout<<"************************************************************"<<endl;
cout<<"start to training positive samples..."<<endl;
//char positiveImgName[256];
string pospath;
ifstream posin("sample\\A.txt");
int i=0;
while(getline(posin,pospath))
{
cv::Mat src = cv::imread(pospath);
Mat img(DST_IMG_HEIGH,DST_IMG_WIDTH,src.type());
resize(src,img,img.size(),0,0,INTER_LINEAR);
if( img.data == NULL )
{
cout<<"positive image sample load error: "<<i<<" "<<pospath<<endl;
system("pause");
continue;
}
cv::HOGDescriptor hog(cv::Size(32,32), cv::Size(8,8), cv::Size(4,4), cv::Size(4,4), 9);
vector<float> featureVec;
hog.compute(img, featureVec, cv::Size(4,4));
int featureVecSize = featureVec.size();
for (int j=0; j<featureVecSize; j++)
{
CV_MAT_ELEM( *sampleFeaturesMat, float, i, j ) = featureVec[j];
}
sampleLabelMat->data.fl[i] = 1;
i++;
}
cout<<"end of training for positive samples..."<<endl;
cout<<"*********************************************************"<<endl;
cout<<"start to train negative samples..."<<endl;
int k =0;
string negpath;
ifstream negin("sample\\Aneg.txt");
while(getline(negin,negpath))
{
cv::Mat src = cv::imread(negpath);
Mat img(DST_IMG_HEIGH,DST_IMG_WIDTH,src.type());
resize(src,img,img.size(),0,0,INTER_LINEAR);
if(img.data == NULL)
{
cout<<"negative image sample load error: "<<negpath<<endl;
continue;
}
cv::HOGDescriptor hog(cv::Size(32,32), cv::Size(8,8), cv::Size(4,4), cv::Size(4,4), 9);
vector<float> featureVec;
hog.compute(img,featureVec,cv::Size(4,4));//計算HOG特徵
int featureVecSize = featureVec.size();
for ( int j=0; j<featureVecSize;j ++)
{
CV_MAT_ELEM( *sampleFeaturesMat, float, k+ positiveSampleCount,j ) = featureVec[j];
}
sampleLabelMat->data.fl[ k + positiveSampleCount] = -1;
k++;
}
cout<<"end of training for negative samples..."<<endl;
cout<<"********************************************************"<<endl;
cout<<"start to train for SVM classifier..."<<endl;
CvSVMParams params;
params.svm_type = CvSVM::C_SVC;
params.kernel_type = CvSVM::LINEAR;
params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 1000, FLT_EPSILON);
params.C = 0.01;
Mysvm svm;
svm.train( sampleFeaturesMat, sampleLabelMat, NULL, NULL, params ); //用SVM線性分類器訓練
svm.save(classifierSavePath);
cvReleaseMat(&sampleFeaturesMat);
cvReleaseMat(&sampleLabelMat);
int supportVectorSize = svm.get_support_vector_count();
cout<<"support vector size of SVM:"<<supportVectorSize<<endl;
cout<<"************************ end of training for SVM ******************"<<endl;
CvMat *sv,*alp,*re;//所有樣本特徵向量
sv = cvCreateMat(supportVectorSize , 1764, CV_32FC1);
alp = cvCreateMat(1 , supportVectorSize, CV_32FC1);
re = cvCreateMat(1 , 1764, CV_32FC1);
CvMat *res = cvCreateMat(1 , 1, CV_32FC1);
cvSetZero(sv);
cvSetZero(re);
for(int i=0; i<supportVectorSize; i++)
{
memcpy( (float*)(sv->data.fl+i*1764), svm.get_support_vector(i), 1764*sizeof(float));
}
double* alphaArr = svm.get_alpha();
int alphaCount = svm.get_alpha_count();
for(int i=0; i<supportVectorSize; i++)
{
alp->data.fl[i] = alphaArr[i];
}
cvMatMul(alp, sv, re);
int posCount = 0;
for (int i=0; i<1764; i++)
{
re->data.fl[i] *= -1;
}
FILE* fp = fopen("dector0_20X32.txt","wb");
if( NULL == fp )
{
return ;
}
for(int i=0; i<1764; i++)
{
fprintf(fp,"%f \n",re->data.fl[i]);
}
float rho = svm.get_rho();
fprintf(fp, "%f", rho);
cout<<"hogSVMDetector.txt 儲存完畢"<<endl;//儲存HOG能識別的分類器
fclose(fp);
return;
}
void Detect()
{
vector<float> x;
ifstream fileIn("dector_circle.txt", ios::in);
float val = 0.0f;
while(!fileIn.eof())
{
fileIn>>val;
x.push_back(val);
}
fileIn.close();
vector<cv::Rect> found;
cv::HOGDescriptor hog(cv::Size(32,32), cv::Size(8,8), cv::Size(4,4), cv::Size(4,4), 9);
hog.setSVMDetector(x);
vector<double>foundweight;
IplImage* img = NULL;
img=cvLoadImage("D:\\test\\testori\\00020.ppm");//D:\\test\\testori\\00093.ppm D:\\HOG+SVM-TEST\\pos\\11.jpg
hog.detectMultiScale(img, found,foundweight,0, cv::Size(4,4), cv::Size(8,8), 1.1, 0);
if (found.size() > 0)
{
for (int i=0; i<found.size(); i++)
{
CvRect tempRect = cvRect(found[i].x, found[i].y, found[i].width, found[i].height);
cvRectangle(img, cvPoint(tempRect.x,tempRect.y),
cvPoint(tempRect.x+tempRect.width,tempRect.y+tempRect.height),CV_RGB(255,0,0), 1);
}
}
cvNamedWindow("img",1);
cvShowImage("img",img);
cvWaitKey(0);
}
int main()
{
//Train();
Detect();
}