前言
典例剖析
(1). 在兩種摸球方式下分別計算事件 \(A_{1}\), \(A_{2}\), \(A_{3}\) 發生的機率的大小關係 .
解:有放回的情況下:
計算\(P(A_1)\)時, \(n(\Omega_{1})\)\(=\)\(C_{10}^1\)\(=\)\(10\),滿足有限等可能性,\(n(A_1)\)\(=\)\(C_{4}^1\)\(=\)\(4\),故 \(P(A_1)\)\(=\)\(\cfrac{4}{10}=0.4\);
採用古典概型計算 \(P(A_2)\) 時, \(n(\Omega_{2})\)\(=\)\(C_{10}^1\)\(\times\)\(C_{10}^1\)\(=\)\(100\),滿足有限等可能性,\(n(A_2)\)\(=\)\(C_{6}^1\)\(\times\)\(C_{4}^1\)\(+\)\(C_{4}^1\)\(\times\)\(C_{4}^1\)\(=\)\(40\)[包括第一次取到白球第二次取到紅球和包括第一次取到紅球第二次取到紅球兩種情況],故 \(P(A_2)\)\(=\)\(\cfrac{40}{100}\)\(=\)\(0.4\);
簡化計算模型,採用相互獨立事件計算 \(P(A_2)\) ,令前半次取到白球為 \(A\),後半次取到紅球為 \(B\),則 \(P(A)\)\(=\)\(\cfrac{6}{10}\), \(P(B)\)\(=\)\(\cfrac{4}{10}\), 前半次取到紅球為\(P(\bar{A})\)\(=\)\(\cfrac{4}{10}\), 後半次取到白球為 \(P(\bar{B})\)\(=\)\(\cfrac{6}{10}\),則 \(A_2=AB\cup\bar{A}B\),且 \(A\)、\(B\)相互獨立[原因:\(P(AB)\)\(=\)\(\cfrac{24}{100}\)\(=\)\(\cfrac{6}{10}\)\(\times\)\(\cfrac{4}{10}\)], \(\bar{A}\)、\(B\)相互獨立,\(AB\) 和 \(\bar{A}B\)彼此互斥,
故 \(P(A_2)\)\(=\)\(\cfrac{6}{10}\)\(\times\)\(\cfrac{4}{10}\)\(+\)\(\cfrac{4}{10}\)\(\times\)\(\cfrac{4}{10}\)\(=\)\(\cfrac{2}{5}\)\(=\)\(0.4\),
計算\(P(A_3)\)時, \(n(\Omega_{3})\)\(=\)\(C_{10}^1\)\(\times\)\(C_{10}^1\)\(\times\)\(C_{10}^1\)\(=\)\(1000\),滿足有限等可能性,\(n(A_3)\)\(=\)\(C_{6}^1\)\(\times\)\(C_{6}^1\)\(\times\)\(C_{4}^1\)\(+\)\(C_{6}^1\)\(\times\)\(C_{4}^1\)\(\times\)\(C_{4}^1\)\(+\)\(C_{4}^1\)\(\times\)\(C_{6}^1\)\(\times\)\(C_{4}^1\)\(+\)\(C_{4}^1\)\(\times\)\(C_{4}^1\)\(\times\)\(C_{4}^1\)\(=\)\(400\)[包括一白二白三紅,一白二紅三紅,一紅二白三紅,一紅二紅三紅共四種情況],故 \(P(A_3)\)\(=\)\(\cfrac{400}{1000}\)\(=\)\(0.4\);
簡化計算模型,故 \(P(A_3)\)\(=\)\(\cfrac{6}{10}\)\(\times\)\(\cfrac{6}{10}\)\(\times\)\(\cfrac{4}{10}\)\(+\)\(\cfrac{6}{10}\)\(\times\)\(\cfrac{4}{10}\)\(\times\)\(\cfrac{4}{10}\)\(+\)\(\cfrac{4}{10}\)\(\times\)\(\cfrac{6}{10}\)\(\times\)\(\cfrac{4}{10}\)\(+\)\(\cfrac{4}{10}\)\(\times\)\(\cfrac{4}{10}\)\(\times\)\(\cfrac{4}{10}\)\(=\)\(0.4\),
無放回的情況下:
\(P(A_1)\)\(=\)\(\cfrac{4}{10}=0.4\);
\(P(A_2)\)\(=\)\(\cfrac{6}{10}\)\(\times\)\(\cfrac{4}{9}\)\(+\)\(\cfrac{4}{10}\)\(\times\)\(\cfrac{3}{9}\)\(=\)\(\cfrac{2}{5}\)\(=\)\(0.4\),
\(P(A_3)\)\(=\)\(\cfrac{6}{10}\)\(\times\)\(\cfrac{5}{9}\)\(\times\)\(\cfrac{4}{8}\)\(+\)\(\cfrac{6}{10}\)\(\times\)\(\cfrac{4}{9}\)\(\times\)\(\cfrac{3}{8}\)\(+\)\(\cfrac{4}{10}\)\(\times\)\(\cfrac{6}{9}\)\(\times\)\(\cfrac{3}{8}\)\(+\)\(\cfrac{4}{10}\)\(\times\)\(\cfrac{3}{9}\)\(\times\)\(\cfrac{2}{8}\)\(=\)\(0.4\),