自動編碼器
如果給定一個神經網路,我們假設其輸出與輸入是相同的,然後訓練調整其引數,得到每一層中的權重。自然地,我們就得到了輸入I的幾種不同表示(每一層代表一種表示),這些表示就是特徵。自動編碼器就是一種儘可能復現輸入訊號的神經網路。為了實現這種復現,自動編碼器就必須捕捉可以代表輸入資料的最重要的因素,就像PCA那樣,找到可以代表原資訊的主要成分。
具體過程簡單的說明如下:
1)給定無標籤資料,用非監督學習學習特徵:
在我們之前的神經網路中,如第一個圖,我們輸入的樣本是有標籤的,即(input, target),這樣我們根據當前輸出和target(label)之間的差去改變前面各層的引數,直到收斂。但現在我們只有無標籤資料,也就是右邊的圖。那麼這個誤差怎麼得到呢?
如上圖,我們將input輸入一個encoder編碼器,就會得到一個code,這個code也就是輸入的一個表示,那麼我們怎麼知道這個code表示的就是input呢?我們加一個decoder解碼器,這時候decoder就會輸出一個資訊,那麼如果輸出的這個資訊和一開始的輸入訊號input是很像的(理想情況下就是一樣的),那很明顯,我們就有理由相信這個code是靠譜的。所以,我們就通過調整encoder和decoder的引數,使得重構誤差最小,這時候我們就得到了輸入input訊號的第一個表示了,也就是編碼code了。因為是無標籤資料,所以誤差的來源就是直接重構後與原輸入相比得到。
2)通過編碼器產生特徵,然後訓練下一層。這樣逐層訓練:
那上面我們就得到第一層的code,我們的重構誤差最小讓我們相信這個code就是原輸入訊號的良好表達了,或者牽強點說,它和原訊號是一模一樣的(表達不一樣,反映的是一個東西)。那第二層和第一層的訓練方式就沒有差別了,我們將第一層輸出的code當成第二層的輸入訊號,同樣最小化重構誤差,就會得到第二層的引數,並且得到第二層輸入的code,也就是原輸入資訊的第二個表達了。其他層就同樣的方法炮製就行了(訓練這一層,前面層的引數都是固定的,並且他們的decoder已經沒用了,都不需要了)。
3)有監督微調:
經過上面的方法,我們就可以得到很多層了。至於需要多少層(或者深度需要多少,這個目前本身就沒有一個科學的評價方法)需要自己試驗調了。每一層都會得到原始輸入的不同的表達。當然了,我們覺得它是越抽象越好了,就像人的視覺系統一樣。
到這裡,這個AutoEncoder還不能用來分類資料,因為它還沒有學習如何去連結一個輸入和一個類。它只是學會了如何去重構或者復現它的輸入而已。或者說,它只是學習獲得了一個可以良好代表輸入的特徵,這個特徵可以最大程度上代表原輸入訊號。那麼,為了實現分類,我們就可以在AutoEncoder的最頂的編碼層新增一個分類器(例如羅傑斯特迴歸、SVM等),然後通過標準的多層神經網路的監督訓練方法(梯度下降法)去訓練。
也就是說,這時候,我們需要將最後層的特徵code輸入到最後的分類器,通過有標籤樣本,通過監督學習進行微調,這也分兩種,一個是隻調整分類器(黑色部分):
另一種:通過有標籤樣本,微調整個系統:(如果有足夠多的資料,這個是最好的。end-to-end learning端對端學習)
一旦監督訓練完成,這個網路就可以用來分類了。神經網路的最頂層可以作為一個線性分類器,然後我們可以用一個更好效能的分類器去取代它。
在研究中可以發現,如果在原有的特徵中加入這些自動學習得到的特徵可以大大提高精確度,甚至在分類問題中比目前最好的分類演算法效果還要好!
AutoEncoder存在一些變體,這裡簡要介紹下兩個:
Sparse AutoEncoder稀疏自動編碼器:
當然,我們還可以繼續加上一些約束條件得到新的Deep Learning方法,如:如果在AutoEncoder的基礎上加上L1的Regularity限制(L1主要是約束每一層中的節點中大部分都要為0,只有少數不為0,這就是Sparse名字的來源),我們就可以得到Sparse AutoEncoder法。
上面公式中:h是編碼引數
如上圖,其實就是限制每次得到的表達code儘量稀疏。因為稀疏的表達往往比其他的表達要有效(人腦好像也是這樣的,某個輸入只是刺激某些神經元,其他的大部分的神經元是受到抑制的)。
Denoising AutoEncoders降噪自動編碼器:
降噪自動編碼器DA是在自動編碼器的基礎上,訓練資料加入噪聲,所以自動編碼器必須學習去去除這種噪聲而獲得真正的沒有被噪聲汙染過的輸入。因此,這就迫使編碼器去學習輸入訊號的更加魯棒的表達,這也是它的泛化能力比一般編碼器強的原因。DA可以通過梯度下降演算法去訓練。
9.2、Sparse Coding稀疏編碼
如果我們把輸出必須和輸入相等的限制放鬆,同時利用線性代數中基的概念,即O = a1*Φ1 + a2*Φ2+….+ an*Φn, Φi是基,ai是係數,我們可以得到這樣一個優化問題:
Min |I – O|,其中I表示輸入,O表示輸出。
通過求解這個最優化式子,我們可以求得係數ai和基Φi,這些係數和基就是輸入的另外一種近似表達。
因此,它們可以用來表達輸入I,這個過程也是自動學習得到的。如果我們在上述式子上加上L1的Regularity限制,得到:
Min |I – O| + u*(|a1| + |a2| + … + |an |)
這種方法被稱為Sparse Coding。通俗的說,就是將一個訊號表示為一組基的線性組合,而且要求只需要較少的幾個基就可以將訊號表示出來。
“稀疏性”定義為:只有很少的幾個非零元素或只有很少的幾個遠大於0的元素。要求係數ai是稀疏的意思就是說:對於一組輸入向量,我們只想有儘可能少的幾個係數遠大於0.選擇使用具有稀疏性的分量來表示我們的輸入資料是有原因的,因為絕大多數的感官資料,比如自然影像,可以被表示成少量基本元素的疊加,在影像中這些基本元素可以是面或者線。同時,比如與初級視覺皮層的類比過程也因此得到了提升(人腦有大量的神經元,但對於某些影像或者邊緣只有很少的神經元興奮,其他都處於抑制狀態)。
稀疏編碼演算法是一種無監督學習方法,它用來尋找一組“超完備”基向量來更高效地表示樣本資料。然形如主成分分析技術(PCA)能使我們方便地找到一組“完備”基向量,但是這裡我們想要做的是找到一組“超完備”基向量來表示輸入向量(也就是說,基向量的個數比輸入向量的維數要大)。超完備基的好處是它們能更有效地找出隱含在輸入資料內部的結構與模式。對於超完備基來說,係數ai不再由輸入向量唯一確定。因此,在稀疏編碼演算法中,我們另加了一個評判標準“稀疏性”來解決因超完備而導致的退化(degeneracy)問題。
比如在影像的Feature Extraction的最底層要做Edge Detection的生成,那麼這裡的工作就是從Natural Images中randomly選取一些小patch,通過這些patch生成能夠描述他們的“基”,也就是右邊的8*8=64個basis組成的basis,然後給定一個test patch,我們可以按照上面的式子通過basis的線性組合得到,而sparse matrix(稀疏矩陣)就是a,下圖中的a中有64個維度,其中非零項只有3個,故稱“sparse”。
這裡可能大家會有疑問,為什麼把底層作為Edge Detector呢?上層又是什麼呢?這裡做個簡單解釋大家就會明白,之所以是Edge Detector是因為不同方向的Edge就能夠描述出整幅影像,所以不同方向的Edge自然就是影像的basis了……而上一層的basis組合的結果,上上層又是上一層的組合basis……(就是上面第四部分的時候我們們說的那樣)
Sparse coding分為兩個部分:
1) Training階段:給定一系列的樣本圖片[x1, x 2, …],我們需要學習得到一組基[Φ1, Φ2, …],也就是字典。
稀疏編碼是k-means演算法的變體,其訓練過程也差不多(EM演算法的思想:如果要優化的目標函式包含兩個變數,如L(W, B),那麼我們可以先固定W,調整B使得L最小,然後再固定B,調整W使L最小,這樣迭代交替,不斷將L推向最小值。)
訓練過程就是一個重複迭代的過程,按上面所說,我們交替的更改a和Φ使得下面這個目標函式最小。
每次迭代分兩步:
a)固定字典Φ[k],然後調整a[k],使得上式,即目標函式最小(即解LASSO問題)。
b)然後固定住a [k],調整Φ [k],使得上式,即目標函式最小(即解凸QP問題)。
不斷迭代,直至收斂。這樣就可以得到一組可以良好表示這一系列x的基,也就是字典。
2)Coding階段:給定一個新的圖片x,由上面得到的字典,通過解一個LASSO問題得到稀疏向量a。這個稀疏向量就是這個輸入向量x的一個稀疏表達了。
例如:
相關文章
- 自動編碼器是什麼?教你如何使用自動編碼器增強模糊影像
- 從fdk_aac編碼器到自動靜態編譯FFmpeg編譯
- 自動編碼器Gridsearch超引數調整KerasKeras
- VAE變分自編碼器
- 變分自編碼器VAE(上)
- 自編碼器及其相關模型模型
- 新型掩碼自編碼器 AdaMAE,自適應取樣
- 變分貝葉斯自編碼器
- TensorFlow上實現AutoEncoder自編碼器
- Keras上實現AutoEncoder自編碼器Keras
- 利用 TensorFlow 實現卷積自編碼器卷積
- 快速瞭解 變分自編碼器 VAE
- 圖自編碼器的起源和應用
- 漫談概率 PCA 和變分自編碼器PCA
- web自動化測試框架-06 如何快速編寫自動化指令碼Web框架指令碼
- C#自動檢測檔案的編碼C#
- 卷積自編碼卷積
- DL4J中文文件/模型/自編碼器模型
- 變分自編碼器(五):VAE + BN = 更好的VAE
- 編寫可調模板並使用自動調諧器
- 【機器學習】李宏毅——AE自編碼器(Auto-encoder)機器學習
- Gitee Webhook 實現自動拉取程式碼並編譯程式碼GiteeWebHook編譯
- python+pytest介面自動化(12)-自動化用例編寫思路 (使用pytest編寫一個測試指令碼)Python指令碼
- 【學習圖片】13.自動壓縮和編碼
- 人臉合成效果媲美StyleGAN,而它是個自編碼器
- 變分自編碼器(七):球面上的VAE(vMF-VAE)
- 除了檢查語法,用上深度學習的編輯器也能自動優化程式碼深度學習優化
- 【Netty】編解碼器Netty
- iOS自動化編譯打包iOS編譯
- 編譯器的自展和自舉、交叉編譯編譯
- 如何用LSTM自編碼器進行極端事件預測?(含Python程式碼)事件Python
- 還有這種好事!netty自帶http2的編碼解碼器framecodecNettyHTTP
- 實操講解:使用Keras中的自動編碼器進行極端罕見事件分類Keras事件
- B站自研新一代影片編碼器 BILIAV1
- 用於影像降噪的卷積自編碼器 | 視覺進階卷積視覺
- 變分自編碼器(二):從貝葉斯觀點出發
- 【Codecs系列】硬體編碼器編碼引數分析
- netty系列之:netty中的自動解碼器ReplayingDecoderNetty