簡介
TensorFlow提供了用於檢測圖片或視訊中所包含物體的API,詳情可參考以下連結
物體檢測和圖片分類不同
- 圖片分類是將圖片分為某一類別,即從多個可能的分類中選擇一個,即使可以按照概率輸出最可能的多個分類,但理論上的正確答案只有一個
- 物體檢測是檢測圖片中所出現的全部物體並且用矩形(Anchor Box)進行標註,物體的類別可以包括多種,例如人、車、動物、路標等,即正確答案可以是多個
通過多個例子,瞭解TensorFlow物體檢測API的使用方法
這裡使用預訓練好的ssd_mobilenet_v1_coco
模型(Single Shot MultiBox Detector),更多可用的物體檢測模型可以參考這裡
舉個例子
載入庫
# -*- coding: utf-8 -*-
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from PIL import Image
from utils import label_map_util
from utils import visualization_utils as vis_util
複製程式碼
定義一些常量
PATH_TO_CKPT = 'ssd_mobilenet_v1_coco_2017_11_17/frozen_inference_graph.pb'
PATH_TO_LABELS = 'ssd_mobilenet_v1_coco_2017_11_17/mscoco_label_map.pbtxt'
NUM_CLASSES = 90
複製程式碼
載入預訓練好的模型
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
od_graph_def.ParseFromString(fid.read())
tf.import_graph_def(od_graph_def, name='')
複製程式碼
載入分類標籤資料
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
複製程式碼
一個將圖片轉為陣列的輔助函式,以及測試圖片路徑
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape((im_height, im_width, 3)).astype(np.uint8)
TEST_IMAGE_PATHS = ['test_images/image1.jpg', 'test_images/image2.jpg']
複製程式碼
使用模型進行物體檢測
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
for image_path in TEST_IMAGE_PATHS:
image = Image.open(image_path)
image_np = load_image_into_numpy_array(image)
image_np_expanded = np.expand_dims(image_np, axis=0)
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
vis_util.visualize_boxes_and_labels_on_image_array(image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8)
plt.figure(figsize=[12, 8])
plt.imshow(image_np)
plt.show()
複製程式碼
檢測結果如下,第一張圖片檢測出了兩隻狗狗
第二張圖片檢測出了一些人和風箏
攝像頭檢測
安裝OpenCV
,用於實現和計算機視覺相關的功能,版本為3.3.0.10
pip install opencv-python opencv-contrib-python -i https://pypi.tuna.tsinghua.edu.cn/simple
複製程式碼
檢視是否安裝成功,沒有報錯即可
import cv2
tracker = cv2.TrackerMedianFlow_create()
複製程式碼
在以上程式碼的基礎上進行修改
- 載入
cv2
並獲取攝像頭 - 不斷地從攝像頭獲取圖片
- 將檢測後的結果輸出
完整程式碼如下
# -*- coding: utf-8 -*-
import numpy as np
import tensorflow as tf
from utils import label_map_util
from utils import visualization_utils as vis_util
import cv2
cap = cv2.VideoCapture(0)
PATH_TO_CKPT = 'ssd_mobilenet_v1_coco_2017_11_17/frozen_inference_graph.pb'
PATH_TO_LABELS = 'ssd_mobilenet_v1_coco_2017_11_17/mscoco_label_map.pbtxt'
NUM_CLASSES = 90
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
od_graph_def.ParseFromString(fid.read())
tf.import_graph_def(od_graph_def, name='')
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
while True:
ret, image_np = cap.read()
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
image_np_expanded = np.expand_dims(image_np, axis=0)
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
vis_util.visualize_boxes_and_labels_on_image_array(image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8)
cv2.imshow('object detection', cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR))
if cv2.waitKey(25) & 0xFF == ord('q'):
cap.release()
cv2.destroyAllWindows()
break
複製程式碼
視訊檢測
使用cv2
讀取視訊並獲取每一幀圖片,然後將檢測後的每一幀寫入新的視訊檔案
生成的視訊檔案只有影像、沒有聲音,關於音訊的處理以及視訊和音訊的合成,後面再進一步探索
完整程式碼如下
# -*- coding: utf-8 -*-
import numpy as np
import tensorflow as tf
from utils import label_map_util
from utils import visualization_utils as vis_util
import cv2
cap = cv2.VideoCapture('絕地逃亡.mov')
ret, image_np = cap.read()
out = cv2.VideoWriter('output.mov', -1, cap.get(cv2.CAP_PROP_FPS), (image_np.shape[1], image_np.shape[0]))
PATH_TO_CKPT = 'ssd_mobilenet_v1_coco_2017_11_17/frozen_inference_graph.pb'
PATH_TO_LABELS = 'ssd_mobilenet_v1_coco_2017_11_17/mscoco_label_map.pbtxt'
NUM_CLASSES = 90
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
od_graph_def.ParseFromString(fid.read())
tf.import_graph_def(od_graph_def, name='')
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
while cap.isOpened():
ret, image_np = cap.read()
if len((np.array(image_np)).shape) == 0:
break
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
image_np_expanded = np.expand_dims(image_np, axis=0)
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
vis_util.visualize_boxes_and_labels_on_image_array(image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8)
out.write(cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR))
cap.release()
out.release()
cv2.destroyAllWindows()
複製程式碼
播放處理好的視訊,可以看到很多地方都有相應的檢測結果
參考
- Introduction and Use - Tensorflow Object Detection API Tutorial:pythonprogramming.net/introductio…
- Tensorflow Object Detection API:github.com/tensorflow/…
- SSD - Single Shot MultiBox Detector:arxiv.org/pdf/1512.02…