用 python 實現各種排序演算法

pythontab發表於2014-11-14

總結了一下常見集中排序的演算法

用 python 實現各種排序演算法

歸併排序

歸併排序也稱合併排序,是分治法的典型應用。分治思想是將每個問題分解成個個小問題,將每個小問題解決,然後合併。

具體的歸併排序就是,將一組無序數按n/2遞迴分解成只有一個元素的子項,一個元素就是已經排好序的了。然後將這些有序的子元素進行合併。

合併的過程就是 對 兩個已經排好序的子序列,先選取兩個子序列中最小的元素進行比較,選取兩個元素中最小的那個子序列並將其從子序列中

去掉新增到最終的結果集中,直到兩個子序列歸併完成。

程式碼如下:

#!/usr/bin/python  
import sys  
  
def merge(nums, first, middle, last):  
    ''''' merge '''  
    # 切片邊界,左閉右開並且是了0為開始  
    lnums = nums[first:middle+1]   
    rnums = nums[middle+1:last+1]  
    lnums.append(sys.maxint)  
    rnums.append(sys.maxint)  
    l = 0  
    r = 0  
    for i in range(first, last+1):  
        if lnums[l] < rnums[r]:  
            nums[i] = lnums[l]  
            l+=1  
        else:  
            nums[i] = rnums[r]  
            r+=1  
def merge_sort(nums, first, last):  
    ''''' merge sort 
    merge_sort函式中傳遞的是下標,不是元素個數 
    '''  
    if first < last:  
        middle = (first + last)/2  
        merge_sort(nums, first, middle)  
        merge_sort(nums, middle+1, last)  
        merge(nums, first, middle,last)  
  
if __name__ == '__main__':  
    nums = [10,8,4,-1,2,6,7,3]  
    print 'nums is:', nums  
    merge_sort(nums, 0, 7)  
    print 'merge sort:', nums

穩定,時間複雜度 O(nlog n)

插入排序

程式碼如下:

#!/usr/bin/python  
import sys  
  
def insert_sort(a):  
    ''''' 插入排序 
    有一個已經有序的資料序列,要求在這個已經排好的資料序列中插入一個數, 
    但要求插入後此資料序列仍然有序。剛開始 一個元素顯然有序,然後插入一 
    個元素到適當位置,然後再插入第三個元素,依次類推 
    '''  
    a_len = len(a)  
    if a_len = 0 and a[j] > key:  
            a[j+1] = a[j]  
            j-=1  
        a[j+1] = key  
    return a  
  
if __name__ == '__main__':  
    nums = [10,8,4,-1,2,6,7,3]  
    print 'nums is:', nums  
    insert_sort(nums)  
    print 'insert sort:', nums

穩定,時間複雜度 O(n^2)

交換兩個元素的值python中你可以這麼寫:a, b = b, a,其實這是因為賦值符號的左右兩邊都是元組

這裡需要強調的是,在python中,元組其實是由逗號“,”來界定的,而不是括號)。

選擇排序

選擇排序(Selection sort)是一種簡單直觀的排序演算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到

排序序列的起始位置,然後,再從剩餘未排序元素中繼續尋找最小(大)元素,然後放到已排序序列的末尾。以此類推,直到所

有元素均排序完畢。

import sys  
def select_sort(a):  
    ''''' 選擇排序  
    每一趟從待排序的資料元素中選出最小(或最大)的一個元素, 
    順序放在已排好序的數列的最後,直到全部待排序的資料元素排完。 
    選擇排序是不穩定的排序方法。 
    '''  
    a_len=len(a)  
    for i in range(a_len):#在0-n-1上依次選擇相應大小的元素   
        min_index = i#記錄最小元素的下標   
        for j in range(i+1, a_len):#查詢最小值  
            if(a[j]<a[min_index]):  
                min_index=j  
        if min_index != i:#找到最小元素進行交換  
            a[i],a[min_index] = a[min_index],a[i]  
  
if __name__ == '__main__':  
    A = [10, -3, 5, 7, 1, 3, 7]    
    print 'Before sort:',A    
    select_sort(A)    
    print 'After sort:',A

不穩定,時間複雜度 O(n^2)

希爾排序

希爾排序,也稱遞減增量排序演算法,希爾排序是非穩定排序演算法。該方法又稱縮小增量排序,因DL.Shell於1959年提出而得名。

先取一個小於n的整數d1作為第一個增量,把檔案的全部記錄分成d1個組。所有距離為d1的倍數的記錄放在同一個組中。先在各組內進行排序;

然後,取第二個增量d2<d1重複上述的分組和排序,直至所取的增量dt=1(dt<dt-l<…<d2<d1),即所有記錄放在同一組中進行直接插入排序為止。

import sys  
def shell_sort(a):  
    ''''' shell排序  
    '''  
    a_len=len(a)  
    gap=a_len/2#增量  
    while gap>0:  
        for i in range(a_len):#對同一個組進行選擇排序  
            m=i  
            j=i+1  
            while j<a_len:  
                if a[j]<a[m]:  
                    m=j  
                j+=gap#j增加gap  
            if m!=i:  
                a[m],a[i]=a[i],a[m]  
        gap/=2  
  
if __name__ == '__main__':  
    A = [10, -3, 5, 7, 1, 3, 7]    
    print 'Before sort:',A    
    shell_sort(A)    
    print 'After sort:',A

不穩定,時間複雜度 平均時間 O(nlogn) 最差時間O(n^s)1<s<2

堆排序 ( Heap Sort )

"堆”的定義:在起始索引為 0 的“堆”中:

節點 i 的右子節點在位置 2 * i + 24) 節點 i 的父節點在位置 floor( (i - 1) / 2 )   : 注 floor 表示“取整”操作

 堆的特性:

 每個節點的鍵值一定總是大於(或小於)它的父節點

“最大堆”:

“堆”的根節點儲存的是鍵值最大的節點。即“堆”中每個節點的鍵值都總是大於它的子節點。

 上移,下移 :

當某節點的鍵值大於它的父節點時,這時我們就要進行“上移”操作,即我們把該節點移動到它的父節點的位置,

而讓它的父節點到它的位置上,然後我們繼續判斷該節點,直到該節點不再大於它的父節點為止才停止“上移”。

現在我們再來了解一下“下移”操作。當我們把某節點的鍵值改小了之後,我們就要對其進行“下移”操作。

方法:

我們首先建立一個最大堆(時間複雜度O(n)),然後每次我們只需要把根節點與最後一個位置的節點交換,然後把最後一個位置排除之外,然後把交換後根節點的堆進行調整(時間複雜度 O(lgn) ),即對根節點進行“下移”操作即可。 堆排序的總的時間複雜度為O(nlgn).

程式碼如下:

#!/usr/bin env python  
  
# 陣列編號從 0開始  
def left(i):  
    return 2*i +1  
def right(i):  
    return 2*i+2  
  
#保持最大堆性質 使以i為根的子樹成為最大堆  
def max_heapify(A, i, heap_size):  
    if heap_size <= 0:  
        return   
    l = left(i)  
    r = right(i)  
    largest = i # 選出子節點中較大的節點  
    if l  A[largest]:  
        largest = l  
    if r  A[largest]:  
        largest = r  
    if i != largest :#說明當前節點不是最大的,下移  
        A[i], A[largest] = A[largest], A[i] #交換  
        max_heapify(A, largest, heap_size)#繼續追蹤下移的點  
    #print A  
# 建堆    
def bulid_max_heap(A):  
    heap_size = len(A)  
    if heap_size >1:  
        node = heap_size/2 -1  
        while node >= 0:  
           max_heapify(A, node, heap_size)  
           node -=1  
  
# 堆排序 下標從0開始  
def heap_sort(A):  
    bulid_max_heap(A)  
    heap_size = len(A)  
    i = heap_size - 1   
    while i > 0 :  
        A[0],A[i] = A[i], A[0] # 堆中的最大值存入陣列適當的位置,並且進行交換  
        heap_size -=1 # heap 大小 遞減 1  
        i -= 1 # 存放堆中最大值的下標遞減 1  
        max_heapify(A, 0, heap_size)  
  
if __name__ == '__main__' :  
  
    A = [10, -3, 5, 7, 1, 3, 7]  
    print 'Before sort:',A  
    heap_sort(A)  
    print 'After sort:',A

不穩定,時間複雜度 O(nlog n)

快速排序

快速排序演算法和合並排序演算法一樣,也是基於分治模式。對子陣列A[p...r]快速排序的分治過程的三個步驟為:

分解:把陣列A[p...r]分為A[p...q-1]與A[q+1...r]兩部分,其中A[p...q-1]中的每個元素都小於等於A[q]而A[q+1...r]中的每個元素都大於等於A[q];

解決:透過遞迴呼叫快速排序,對子陣列A[p...q-1]和A[q+1...r]進行排序;

合併:因為兩個子陣列是就地排序的,所以不需要額外的操作。

對於劃分partition 每一輪迭代的開始,x=A[r], 對於任何陣列下標k,有:

1) 如果p≤k≤i,則A[k]≤x。

2) 如果i+1≤k≤j-1,則A[k]>x。

3) 如果k=r,則A[k]=x。

程式碼如下:

#!/usr/bin/env python  
# 快速排序  
''''' 
劃分 使滿足 以A[r]為基準對陣列進行一個劃分,比A[r]小的放在左邊, 
   比A[r]大的放在右邊 
快速排序的分治partition過程有兩種方法, 
一種是上面所述的兩個指標索引一前一後逐步向後掃描的方法, 
另一種方法是兩個指標從首位向中間掃描的方法。 
'''  
#p,r 是陣列A的下標  
def partition1(A, p ,r):  
    ''''' 
      方法一,兩個指標索引一前一後逐步向後掃描的方法 
    '''  
    x = A[r]  
    i = p-1  
    j = p  
    while j < r:  
        if A[j] < x:  
            i +=1  
            A[i], A[j] = A[j], A[i]  
        j += 1  
    A[i+1], A[r] = A[r], A[i+1]  
    return i+1  
  
def partition2(A, p, r):  
    ''''' 
    兩個指標從首尾向中間掃描的方法 
    '''  
    i = p  
    j = r  
    x = A[p]  
    while i = x and i < j:  
            j -=1  
        A[i] = A[j]  
        while A[i]<=x and i < j:  
            i +=1  
        A[j] = A[i]  
    A[i] = x  
    return i  
  
# quick sort  
def quick_sort(A, p, r):  
    ''''' 
        快速排序的最差時間複雜度為O(n2),平時時間複雜度為O(nlgn) 
    '''  
    if p < r:  
        q = partition2(A, p, r)  
        quick_sort(A, p, q-1)  
        quick_sort(A, q+1, r)  
  
if __name__ == '__main__':  
  
    A = [5,-4,6,3,7,11,1,2]  
    print 'Before sort:',A  
    quick_sort(A, 0, 7)  
    print 'After sort:',A

不穩定,時間複雜度 最理想 O(nlogn)最差時間O(n^2)

說下python中的序列:

列表、元組和字串都是序列,但是序列是什麼,它們為什麼如此特別呢?序列的兩個主要特點是索引運算子和切片運算子。索引運算子讓我們可以從序列中抓取一個特定專案。切片運算子讓我們能夠獲取序列的一個切片,即一部分序列,如:a = ['aa','bb','cc'], print a[0] 為索引操作,print a[0:2]為切片操作。


相關文章