人工智慧入門書單(附PDF連結)

Python之禪發表於2018-06-08
640?wx_fmt=jpeg工學博士、副教授總結的人工智慧入門書單,分享給大家,文章是極客時間的投稿機器學習篇

在機器學習上,首先要推薦的是兩部國內作者的著作:李航博士所著的《統計學習方法》和周志華教授的《機器學習》。

《統計學習方法》採用“總 - 分 - 總”的結構,在梳理了統計學習的基本概念後,系統而全面地介紹了統計學習中的 10 種主要方法,最後對這些演算法做了總結與比較。這本書以數學公式為主,介紹每種方法時都給出了詳盡的數學推導,幾乎不含任何廢話,因而對讀者的數學背景也提出了較高的要求。

640?wx_fmt=jpeg

相比之下,《機器學習》覆蓋的範圍更廣,具有更強的導論性質,有助於瞭解機器學習的全景。書中涵蓋了機器學習中幾乎所有演算法類別的基本思想、適用範圍、優缺點與主要實現方式,並穿插了大量通俗易懂的例項。

640?wx_fmt=jpeg

如果說《統計學習方法》勝在深度,那麼《機器學習》就勝在廣度。在具備廣度的前提下,可以根據《機器學習》中提供的豐富參考文獻繼續深挖。

讀完以上兩本書,就可以閱讀一些經典著作了。經典著作首推 Tom Mitchell 所著的 Machine Learning,中譯本名為《機器學習》。本書成書於 1997 年,雖然難以覆蓋機器學習中的最新進展,但對於基本理論和核心演算法的論述依然鞭辟入裡,畢竟經典理論經得起時間的考驗。這本書的側重點也在於廣度,並不涉及大量複雜的數學推導,是比較理想的入門書籍。作者曾在自己的主頁上說本書要出新版,並補充了一些章節的內容,也許近兩年可以期待新版本的出現。

640?wx_fmt=png

640?wx_fmt=jpeg

另一本經典著作是 Trevor Hastie 等人所著的 Elements of Statistical Learning,於 2016 年出版了第二版。這本書沒有中譯,只有影印本。高手的書都不會用大量複雜的數學公式來嚇唬人(專於演算法推導的書除外),這一本也不例外。它強調的是各種學習方法的內涵和外延,相比於具體的推演,通過方法的來龍去脈來理解其應用場景和發展方向恐怕更加重要。

640?wx_fmt=png

壓軸登場的非 Christopher Bishop 所著的 Pattern Recognition and Machine Learning 莫屬了。本書出版於 2007 年,沒有中譯本,也許原因在於將這樣一本煌煌鉅著翻譯出來不知要花費多少挑燈夜戰的夜晚。這本書的特點在於將機器學習看成一個整體,不管於基於頻率的方法還是貝葉斯方法,不管是迴歸模型還是分類模型,都只是一個問題的不同側面。作者能夠開啟上帝視角,將機器學習的林林總總都納入一張巨網之中,遺憾的是,大多數讀者跟不上他高屋建瓴的思路(也包括我自己)。

640?wx_fmt=png

最後推薦的是 David J C MacKay 所著的 Information Theory, Inference and Learning Algorithms,成書於 2003 年,中譯本名為《資訊理論,推理與學習演算法》。本書作者是一位全才型的科學家,這本書也並非機器學習的專著,而是將多個相關學科熔於一爐,內容涉獵相當廣泛。相比於前皮膚著臉的教科書,閱讀本書的感覺就像在和作者聊天,他會在談笑間丟擲各種各樣的問題讓你思考。廣泛的主題使本書的閱讀體驗並不輕鬆,但可以作為擴充套件視野的一個調節。

640?wx_fmt=jpeg

640?wx_fmt=png

數學篇1、線性代數

推薦兩本國外的教材。其一是 Gilbert Strang 所著的 Introduction to Linear Algebra,英文版在 2016 年出到第五版,暫無中譯本。這本通過直觀形象的概念性解釋闡述抽象的基本概念,同時輔以大量線性代數在各領域內的實際應用,對學習者非常友好。作者在麻省理工學院的 OCW 上開設了相應的視訊課程,還配有習題解答、模擬試題等一系列電子資源。

640?wx_fmt=jpeg

其二是 David C Lay 所著的 Linear Algebra and its Applications,英文版在 2015 年同樣出到第五版,中譯本名為《線性代數及其應用》,對應原書第四版。這本書通過向量和線性方程組這些基本概念深入淺出地介紹線代中的基本概念,著重公式背後的代數意義和幾何意義,同樣配有大量應用例項,對理解基本概念幫助很大。

640?wx_fmt=jpeg

640?wx_fmt=jpeg

2、概率論

基礎讀物可以選擇 Sheldon M Ross 所著的 A First Course in Probability,英文版在 2013 年出到第九版(18 年馬上要出第十版),中譯本名為《概率論基礎教程》,對應原書第九版,也有英文影印本。這本書拋開測度,從中心極限定理的角度討論概率問題,對概念的解釋更加通俗,書中還包含海量緊密聯絡生活的應用例項與例題習題。

640?wx_fmt=jpeg

640?wx_fmt=jpeg

另一本艱深的讀物是 Edwin Thompson Jaynes 所著的 Probability Theory: The Logic of Science,本書暫無中譯本,影印本名為《概率論沉思錄》也已絕版。這本書是作者的遺著,花費半個世紀的時間完成,從名字就可以看出是一部神書。作者從邏輯的角度探討了基於頻率的概率,貝葉斯概率和統計推斷,將概率論這門偏經驗的學科納入數理邏輯的框架之下。如果讀這本書,千萬要做好燒腦的準備。

640?wx_fmt=jpeg

3、數理統計

基礎讀物可以選擇陳希孺院士所著的《數理統計學教程》。關於統計學是不是科學的問題依然莫衷一是,但它在機器學習中的重要作用毋庸置疑。陳老的書重在論述統計的概念和思想,力圖傳授利用統計觀點去觀察和分析事物的能力,這是非常難能可貴的。

640?wx_fmt=jpeg

進階閱讀可以選擇 Roger Casella 所著的 Statistical Inference,由於作者已於 2012 年辭世,2001 年的第二版便成為絕唱。中譯本名為《統計推斷》,亦有影印本。本書包含部分概率論的內容,循循善誘地介紹了統計推斷、引數估計、方差迴歸等統計學中的基本問題。

640?wx_fmt=png

4、最優化理論

可以參考 Stephen Boyd 所著的 Convex Optimization,中譯本名為《凸優化》。這本書雖然塊頭嚇人,但可讀性並不差,主要針對實際應用而非理論證明,很多機器學習中廣泛使用的方法都能在這裡找到源頭。

640?wx_fmt=jpeg

640?wx_fmt=jpeg

5、資訊理論

推薦 Thomas Cover 和 Jay A Thomas 合著的 Elements of Information Theory,2006 年出到第二版,中譯本為《資訊理論基礎》。這本書兼顧廣度和深度,雖然不是大部頭卻乾貨滿滿,講清了資訊理論中各個基本概念的物理內涵,但要順暢閱讀需要一定的數學基礎。另外,本書偏重於資訊理論在通訊中的應用。

640?wx_fmt=jpeg

640?wx_fmt=jpeg

作者介紹

王天一,北京郵電大學工學博士,貴州大學大資料與資訊工程學院副教授,貴州省 3D 數字醫療學會會員。在讀期間主要研究方向為連續變數量子通訊理論與系統,主持並參與多項國家級 / 省部級科研專案,以第一作者身份發表 SCI 論文 5 篇。

目前主要研究方向為大資料與人工智慧,研究內容包括以物聯網為基礎的大資料應用及神經網路與機器學習。除技術領域外,對人工智慧的發展方向與未來趨勢亦有深入思考,著有《人工智慧革命》一書。

PDF 連結機器學習篇
  1. Machine Learning

    http://www.cs.ubbcluj.ro/~gabis/ml/ml-books/McGrawHill%20-%20Machine%20Learning%20-Tom%20Mitchell.pdf

  2. Elements of Statistical Learning

    https://web.stanford.edu/~hastie/Papers/ESLII.pdf

  3. Pattern Recognition and Machine Learning

    http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf

  4. Information Theory, Inference and Learning Algorithms

    http://www.inference.org.uk/itprnn/book.pdf

數學篇
  1. Introduction to Linear Algebra

    https://math.mit.edu/~gs/linearalgebra/linearalgebra5_Preface.pdf

  2. Linear Algebra and its Applications

    http://www.zuj.edu.jo/download/linear-algebra-and-its-applications-david-c-lay-pdf/

  3. A First Course in Probability(8th edition)

    http://julio.staff.ipb.ac.id/files/2015/02/Ross_8th_ed_English.pdf

  4. Probability Theory: The Logic of Science

    http://www.med.mcgill.ca/epidemiology/hanley/bios601/GaussianModel/JaynesProbabilityTheory.pdf

  5. Statistical Inference

    https://fsalamri.files.wordpress.com/2015/02/casella_berger_statistical_inference1.pdf

  6. Convex Optimization

    https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

  7. Elements of Information Theory

    http://www.cs-114.org/wp-content/uploads/2015/01/Elements_of_Information_Theory_Elements.pdf


王天一教授在極客時間專欄開設了一門機器學習課程,對人工智慧、機器學習感興趣的同學可以報名學習。


640?wx_fmt=png

相關文章