Python 的列表(list)內部實現是一個陣列,也就是一個線性表。在列表中查詢元素可以使用 list.index() 方法,其時間複雜度為O(n)。對於大資料量,則可以用二分查詢進行優化。二分查詢要求物件必須有序,其基本原理如下:
- 1.從陣列的中間元素開始,如果中間元素正好是要查詢的元素,則搜素過程結束;
- 2.如果某一特定元素大於或者小於中間元素,則在陣列大於或小於中間元素的那一半中查詢,而且跟開始一樣從中間元素開始比較。
- 3.如果在某一步驟陣列為空,則代表找不到。
二分查詢也成為折半查詢,演算法每一次比較都使搜尋範圍縮小一半, 其時間複雜度為 O(logn)。
我們分別用遞迴和迴圈來實現二分查詢:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
def binary_search_recursion(lst, value, low, high): if high < low: return None mid = (low + high) / 2 if lst[mid] > value: return binary_search_recursion(lst, value, low, mid-1) elif lst[mid] < value: return binary_search_recursion(lst, value, mid+1, high) else: return mid def binary_search_loop(lst,value): low, high = 0, len(lst)-1 while low <= high: mid = (low + high) / 2 if lst[mid] < value: low = mid + 1 elif lst[mid] > value: high = mid - 1 else: return mid return None |
接著對這兩種實現進行一下效能測試:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
if __name__ == "__main__": import random lst = [random.randint(0, 10000) for _ in xrange(100000)] lst.sort() def test_recursion(): binary_search_recursion(lst, 999, 0, len(lst)-1) def test_loop(): binary_search_loop(lst, 999) import timeit t1 = timeit.Timer("test_recursion()", setup="from __main__ import test_recursion") t2 = timeit.Timer("test_loop()", setup="from __main__ import test_loop") print "Recursion:", t1.timeit() print "Loop:", t2.timeit() |
執行結果如下:
1 2 |
Recursion: 3.12596702576 Loop: 2.08254289627 |
可以看出迴圈方式比遞迴效率高。
Python 有一個 bisect
模組,用於維護有序列表。bisect
模組實現了一個演算法用於插入元素到有序列表。在一些情況下,這比反覆排序列表或構造一個大的列表再排序的效率更高。Bisect 是二分法的意思,這裡使用二分法來排序,它會將一個元素插入到一個有序列表的合適位置,這使得不需要每次呼叫 sort 的方式維護有序列表。
下面是一個簡單的使用示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
import bisect import random random.seed(1) print'New Pos Contents' print'--- --- --------' l = [] for i in range(1, 15): r = random.randint(1, 100) position = bisect.bisect(l, r) bisect.insort(l, r) print'%3d %3d' % (r, position), l |
輸出結果:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
New Pos Contents --- --- -------- 14 0 [14] 85 1 [14, 85] 77 1 [14, 77, 85] 26 1 [14, 26, 77, 85] 50 2 [14, 26, 50, 77, 85] 45 2 [14, 26, 45, 50, 77, 85] 66 4 [14, 26, 45, 50, 66, 77, 85] 79 6 [14, 26, 45, 50, 66, 77, 79, 85] 10 0 [10, 14, 26, 45, 50, 66, 77, 79, 85] 3 0 [3, 10, 14, 26, 45, 50, 66, 77, 79, 85] 84 9 [3, 10, 14, 26, 45, 50, 66, 77, 79, 84, 85] 44 4 [3, 10, 14, 26, 44, 45, 50, 66, 77, 79, 84, 85] 77 9 [3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85] 1 0 [1, 3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85] |
Bisect模組提供的函式有:
- bisect.bisect_left(a,x, lo=0, hi=len(a)) :
查詢在有序列表 a 中插入 x 的index。lo 和 hi 用於指定列表的區間,預設是使用整個列表。如果 x 已經存在,在其左邊插入。返回值為 index。
- bisect.bisect_right(a,x, lo=0, hi=len(a))
- bisect.bisect(a, x,lo=0, hi=len(a)) :
這2個函式和 bisect_left 類似,但如果 x 已經存在,在其右邊插入。
- bisect.insort_left(a,x, lo=0, hi=len(a)) :
在有序列表 a 中插入 x。和 a.insert(bisect.bisect_left(a,x, lo, hi), x) 的效果相同。
- bisect.insort_right(a,x, lo=0, hi=len(a))
- bisect.insort(a, x,lo=0, hi=len(a)) :
和 insort_left 類似,但如果 x 已經存在,在其右邊插入。
Bisect 模組提供的函式可以分兩類: bisect*
只用於查詢 index, 不進行實際的插入;而 insort*
則用於實際插入。該模組比較典型的應用是計算分數等級:
1 2 3 4 5 |
def grade(score,breakpoints=[60, 70, 80, 90], grades='FDCBA'): i = bisect.bisect(breakpoints, score) return grades[i] print [grade(score) for score in [33, 99, 77, 70, 89, 90, 100]] |
執行結果:
1 |
['F', 'A', 'C', 'C', 'B', 'A', 'A'] |
同樣,我們可以用 bisect 模組實現二分查詢:
1 2 3 4 5 6 |
def binary_search_bisect(lst, x): from bisect import bisect_left i = bisect_left(lst, x) if i != len(lst) and lst[i] == x: return i return None |
我們再來測試一下它與遞迴和迴圈實現的二分查詢的效能:
1 2 3 |
Recursion: 4.00940990448 Loop: 2.6583480835 Bisect: 1.74922895432 |
可以看到其比迴圈實現略快,比遞迴實現差不多要快一半。
Python 著名的資料處理庫 numpy 也有一個用於二分查詢的函式 numpy.searchsorted, 用法與 bisect 基本相同,只不過如果要右邊插入時,需要設定引數 side='right'
,例如:
1 2 3 4 5 6 7 8 9 10 11 |
>>> import numpy as np >>> from bisect import bisect_left, bisect_right >>> data = [2, 4, 7, 9] >>> bisect_left(data, 4) 1 >>> np.searchsorted(data, 4) 1 >>> bisect_right(data, 4) 2 >>> np.searchsorted(data, 4, side='right') 2 |
那麼,我們再來比較一下效能:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
In [20]: %timeit -n 100 bisect_left(data, 99999) 100 loops, best of 3: 670 ns per loop In [21]: %timeit -n 100 np.searchsorted(data, 99999) 100 loops, best of 3: 56.9 ms per loop In [22]: %timeit -n 100 bisect_left(data, 8888) 100 loops, best of 3: 961 ns per loop In [23]: %timeit -n 100 np.searchsorted(data, 8888) 100 loops, best of 3: 57.6 ms per loop In [24]: %timeit -n 100 bisect_left(data, 777777) 100 loops, best of 3: 670 ns per loop In [25]: %timeit -n 100 np.searchsorted(data, 777777) 100 loops, best of 3: 58.4 ms per loop |
可以發現 numpy.searchsorted 效率是很低的,跟 bisect 根本不在一個數量級上。因此 searchsorted 不適合用於搜尋普通的陣列,但是它用來搜尋 numpy.ndarray 是相當快的:
1 2 3 4 5 6 7 8 9 10 11 12 13 |
In [30]: data_ndarray = np.arange(0, 1000000) In [31]: %timeit np.searchsorted(data_ndarray, 99999) The slowest run took 16.04 times longer than the fastest. This could mean that an intermediate result is being cached. 1000000 loops, best of 3: 996 ns per loop In [32]: %timeit np.searchsorted(data_ndarray, 8888) The slowest run took 18.22 times longer than the fastest. This could mean that an intermediate result is being cached. 1000000 loops, best of 3: 994 ns per loop In [33]: %timeit np.searchsorted(data_ndarray, 777777) The slowest run took 31.32 times longer than the fastest. This could mean that an intermediate result is being cached. 1000000 loops, best of 3: 990 ns per loop |
numpy.searchsorted
可以同時搜尋多個值:
1 2 3 4 5 6 |
>>> np.searchsorted([1,2,3,4,5], 3) 2 >>> np.searchsorted([1,2,3,4,5], 3, side='right') 3 >>> np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3]) array([0, 5, 1, 2]) |