Oracle分析函式、多維函式和Model函式簡要說明,主要針對BI報表統計

bq_wang發表於2011-06-06
以下程式碼均經過測試,可直接執行
Oracle分析函式、多維函式和Model函式簡要說明,主要針對BI報表統計,不一定很全面,但對BI應用場景做了少許說明

--建立一張銷售數量表,資料趨勢是遞增的
CREATE TABLE ComputerSales AS   
SELECT
120+TRUNC(rn/12)+ROUND(DBMS_RANDOM.VALUE(1,10)) SalesNumber
  FROM
  (
    SELECT level,ROWNUM rn
      FROM DUAL
   CONNECT BY ROWNUM<=120
  );

--下面用於比較NULL值和非NULL值的統計,可以看出NULL值情況下的COUNT是存在問題的,所以建議資料庫系統中最好不要使用NULL值列
SELECT
  COUNT(*),
  COUNT(a.SalesNumber),
  COUNT(DISTINCT a.SalesNumber),
  SUM(a.SalesNumber),
  AVG(a.SalesNumber),
  MAX(a.SalesNumber),
  MIN(a.SalesNumber)
  FROM ComputerSales A;
DELETE FROM ComputerSales WHERE SalesNumber IS NULL;
COMMIT;
INSERT INTO ComputerSales VALUES(NULL);
COMMIT;
INSERT INTO ComputerSales VALUES(NULL);
COMMIT;
SELECT
  COUNT(*),
  COUNT(a.SalesNumber),
  COUNT(DISTINCT a.SalesNumber),
  SUM(a.SalesNumber),
  AVG(a.SalesNumber),
  MAX(a.SalesNumber),
  MIN(a.SalesNumber)
  FROM ComputerSales A;
SELECT trunc(dbms_random.value(1,101)),  


DELETE FROM ComputerSales WHERE SalesNumber IS NULL;
COMMIT;
--建立增加了日期欄位的表
CREATE TABLE ComputerSalesBAK AS   
SELECT SalesNumber,TRUNC(SYSDATE)+MOD(A.DateSEQ-1,10) SalesDate
  FROM (SELECT SalesNumber,ROW_NUMBER() OVER(ORDER BY ROWID) DateSEQ FROM ComputerSales) A;
DROP TABLE ComputerSales;
RENAME ComputerSalesBAK TO ComputerSales;

--下面是兩種建立方式,構招Area列和日期列
CREATE TABLE ComputerSalesBAK AS   
SELECT SalesNumber,TRUNC(SYSDATE)+MOD(A.DateSEQ-1,24) SalesDate,
       CASE WHEN TRUNC((DateSEQ-1)/24)=1 THEN '華南地區'
            WHEN TRUNC((DateSEQ-1)/24)=2 THEN '華北地區'
            WHEN TRUNC((DateSEQ-1)/24)=3 THEN '東北地區'
            WHEN TRUNC((DateSEQ-1)/24)=4 THEN '華東地區'
            ELSE '其他地區'
       END
  FROM (SELECT SalesNumber,ROW_NUMBER() OVER(ORDER BY ROWID) DateSEQ FROM ComputerSales) A;
DROP TABLE ComputerSales;
RENAME ComputerSalesBAK TO ComputerSales;

--該例可構造SalesDate和Area的重複資料
CREATE TABLE ComputerSalesBAK AS
SELECT SalesNumber,
       TRUNC(SYSDATE)+MOD(A.DateSEQ-1,10) SalesDate,
       CASE WHEN AreaSEQ=1 THEN '華南地區'
            WHEN AreaSEQ=2 THEN '華北地區'
            WHEN AreaSEQ=3 THEN '東北地區'
            WHEN AreaSEQ=4 THEN '華東地區'
            ELSE '其他地區'
       END
  FROM (SELECT SalesNumber,ROW_NUMBER() OVER(ORDER BY ROWID) DateSEQ,ROUND(dbms_random.VALUE(1,5)) AreaSEQ FROM ComputerSales) A;
DROP TABLE ComputerSales;
RENAME ComputerSalesBAK TO ComputerSales;
  

--移動平均值,累計求和,當前視窗平均值,當前視窗求和,以及視窗函式和排序函式的作用域
SELECT
  Area,SalesDate,SalesNumber,
  MIN(SalesNumber) OVER (PARTITION BY Area order by SalesDate) AS min_Area_SalesDate,
  MAX(SalesNumber) OVER (PARTITION BY Area order by SalesDate) AS max_Area_SalesDate,
  AVG(SalesNumber) OVER (PARTITION BY Area order by SalesDate) AS avg_Area_SalesDate,   
  SUM(SalesNumber) OVER (PARTITION BY Area order by SalesDate) AS sum_Area_SalesDate,   
  COUNT(*) OVER (PARTITION BY Area ORDER BY SalesDate) AS count_Area,
  MIN(SalesNumber) OVER (PARTITION BY Area) AS min_Area,
  MAX(SalesNumber) OVER (PARTITION BY Area) AS max_Area,
  AVG(SalesNumber) OVER (PARTITION BY Area) AS avg_Area,   
  SUM(SalesNumber) OVER (PARTITION BY Area) AS sum_Area,   
  COUNT(*) OVER (PARTITION BY Area) AS count_Area  
FROM ComputerSales

--觀察Rank、Dense_Rank,Row_number,Count的區別
--Rank跳號,Dense_Rank不跳號,Row_number唯一,Count按統計數計也跳號
--如果PARTITION BY和order by 的欄位是唯一的話,則這四個函式沒什麼區別
SELECT
  Area,SalesDate,SalesNumber,
  RANK() OVER (PARTITION BY Area order by SalesNumber) AS Rank_Area_SalesNumber,
  DENSE_RANK() OVER (PARTITION BY Area order by SalesNumber) AS DenseRank_Area_SalesNumber,
  ROW_NUMBER() OVER (PARTITION BY Area order by SalesNumber) AS Rownumber_Area_SalesNumber,
  COUNT(*) OVER (PARTITION BY Area order by SalesNumber) AS CountAll_Area_SalesNumber,
  COUNT(SalesNumber) OVER (PARTITION BY Area order by SalesNumber) AS Count_Area_SalesNumber
FROM ComputerSales

--觀察Lag和Lead的異同,以及Lag引數之間的異同
--預設情況下Lag取前一行的值,Lead取後一行的值
--Lag、lead的第一個引數決定了取行的位置,第二個引數為取不到值時的預設值
SELECT
  Area,SalesDate,SalesNumber,
  LAG(SalesNumber) OVER (PARTITION BY Area order by SalesDate) AS Lag_Area_SalesNumber,  
  LEAD(SalesNumber) OVER (PARTITION BY Area order by SalesDate) AS Lead_Area_SalesNumber,   
  LAG(SalesNumber,1) OVER (PARTITION BY Area order by SalesDate) AS Lag1_Area_SalesNumber,
  LAG(SalesNumber,2) OVER (PARTITION BY Area order by SalesDate) AS Lag2_Area_SalesNumber,
  LEAD(SalesNumber,1) OVER (PARTITION BY Area order by SalesDate) AS Lead1_Area_SalesNumber,
  LEAD(SalesNumber,2) OVER (PARTITION BY Area order by SalesDate) AS Lead2_Area_SalesNumber,
  LAG(SalesNumber,1,0) OVER (PARTITION BY Area order by SalesDate) AS Lag10_Area_SalesNumber,
  LAG(SalesNumber,2,1) OVER (PARTITION BY Area order by SalesDate) AS Lag21_Area_SalesNumber,
  LEAD(SalesNumber,1,0) OVER (PARTITION BY Area order by SalesDate) AS Lead10_Area_SalesNumber,
  LEAD(SalesNumber,2,1) OVER (PARTITION BY Area order by SalesDate) AS Lead21_Area_SalesNumber  
FROM ComputerSales

--觀察First_Value和Last_Value的不同
--如果取同一個同組中最大值最小值對應的某列,使用FIRST_VALUE,按照升降序排列即可
--LAST_VALUE有些像兩次分組所求的最後一行
SELECT
  Area,SalesDate,SalesNumber,
  FIRST_VALUE(SalesDate) OVER (PARTITION BY Area order by SalesNumber) AS FirstValue_Area,  
  FIRST_VALUE(SalesDate) OVER (PARTITION BY Area order by SalesNumber DESC) AS FirstValue_Area_Desc,   
  LAST_VALUE(SalesDate) OVER (PARTITION BY Area order by SalesNumber) AS LastValue_Area,
  LAST_VALUE(SalesDate) OVER (PARTITION BY Area order by SalesNumber DESC) AS LastValue_Area_Desc
FROM ComputerSales

--與上面不同的是,KEEP需要和DENSE_RANK FIRST |DENSE_RANK LAST配合使用,且取的是相同Area中按SalesNumber排序所獲得最大或最小的值,而上面只是取第一行或最後一行
SELECT Area,SalesDate,SalesNumber,
  DENSE_RANK() OVER(PARTITION BY Area ORDER BY SalesNumber) DENSE_RANK,
  MIN(SalesDate) KEEP (DENSE_RANK FIRST ORDER BY SalesNumber) OVER(PARTITION BY Area) min_first,
  MIN(SalesDate) KEEP (DENSE_RANK LAST ORDER BY SalesNumber) OVER(PARTITION BY Area) min_last,
  MAX(SalesDate) KEEP (DENSE_RANK FIRST ORDER BY SalesNumber) OVER(PARTITION BY Area) max_first,
  MAX(SalesDate) KEEP (DENSE_RANK LAST ORDER BY SalesNumber) OVER(PARTITION BY Area) max_last
FROM ComputerSales

--CUME_DIST和PERCENT_RANK差不多,都是累計計算比例,只不過計算基準不同,CUME_DIST更符合一般的做法
--NTILE把資料平分為若干份,更適合用來計算四分位上的值
--RATIO_TO_REPORT,則是求當前值在分割槽中的比例,且不能與ORDER BY 合起來使用
--PERCENTILE_DISC和PERCENTILE_CONT,則是給定的比例引數所對應的值,一般使用PERCENTILE_DISC即可
SELECT Area,SalesDate,SalesNumber,
  ROUND(CUME_DIST() OVER(PARTITION BY Area ORDER BY SalesNumber),2) cume_dist,
  ROUND(PERCENT_RANK() OVER(PARTITION BY Area ORDER BY SalesNumber),2) PERCENT_RANK,
  ROUND(RATIO_TO_REPORT(SalesNumber) OVER(PARTITION BY Area),2) RATIO_TO_REPORT,
  NTILE(4) OVER(PARTITION BY Area ORDER BY SalesNumber) NTILE,
  PERCENTILE_DISC(0.7) WITHIN GROUP (ORDER BY SalesNumber) OVER(PARTITION BY Area) PERCENTILE_DISC,
  PERCENTILE_CONT(0.7) WITHIN GROUP (ORDER BY SalesNumber) OVER(PARTITION BY Area) PERCENTILE_CONT
FROM ComputerSales

--增加了一列叫銷售額,可以進行相關數理統計
CREATE TABLE ComputerSalesBAK AS   
SELECT SalesNumber,
       ROUND(SalesNumber*10+5*DBMS_RANDOM.VALUE(1,10)) SalesValue,
       TRUNC(SYSDATE)+MOD(A.DateSEQ-1,24) SalesDate,
       CASE WHEN TRUNC((DateSEQ-1)/24)=1 THEN '華南地區'
            WHEN TRUNC((DateSEQ-1)/24)=2 THEN '華北地區'
            WHEN TRUNC((DateSEQ-1)/24)=3 THEN '東北地區'
            WHEN TRUNC((DateSEQ-1)/24)=4 THEN '華東地區'
            ELSE '其他地區'
       END Area
  FROM (SELECT SalesNumber,ROW_NUMBER() OVER(ORDER BY ROWID) DateSEQ FROM ComputerSales) A;
DROP TABLE ComputerSales;
RENAME ComputerSalesBAK TO ComputerSales;
SELECT * FROM ComputerSales;

--其他統計,對數理分析有研究的同學可以嘗試一下其經濟學含義
SELECT Area,SalesDate,SalesValue,SalesNumber,
  REGR_SLOPE(SalesValue,SalesNumber) OVER(PARTITION BY Area ORDER BY SalesDate) "斜率",
  REGR_INTERCEPT(SalesValue,SalesNumber) OVER(PARTITION BY Area ORDER BY SalesDate) "截距",
  REGR_R2(SalesValue,SalesNumber) OVER(PARTITION BY Area ORDER BY SalesDate) "迴歸線決定係數",
  REGR_AVGX(SalesValue,SalesNumber) OVER(PARTITION BY Area ORDER BY SalesDate) "迴歸線自變數平均值",
  REGR_AVGY(SalesValue,SalesNumber) OVER(PARTITION BY Area ORDER BY SalesDate) "迴歸線應變數平均值",  
  VAR_POP(SalesValue) OVER(PARTITION BY Area ORDER BY SalesDate) "VAR_POP_應變數",  
  VAR_POP(SalesNumber) OVER(PARTITION BY Area ORDER BY SalesDate) "VAR_POP_自變數",  
  COVAR_POP(SalesValue,SalesNumber) OVER(PARTITION BY Area ORDER BY SalesDate) "COVAR_POP",        
  REGR_SXX(SalesValue,SalesNumber) OVER(PARTITION BY Area ORDER BY SalesDate) "REGR_SXX",  --REGR_COUNT(expr1, expr2) * VAR_POP(expr2)  
  REGR_SYY(SalesValue,SalesNumber) OVER(PARTITION BY Area ORDER BY SalesDate) "REGR_SXY",  --REGR_COUNT(expr1, expr2) * VAR_POP(expr1)
  REGR_SXY(SalesValue,SalesNumber) OVER(PARTITION BY Area ORDER BY SalesDate) "REGR_SXY",  --REGR_COUNT(expr1, expr2) * COVAR_POP(expr1, expr2)   
  REGR_COUNT(SalesValue,SalesNumber) OVER(PARTITION BY Area ORDER BY SalesDate) "REGR_COUNT"
FROM ComputerSales

--關於按日期進行環比的問題
--同比則有麻煩,因為日期天數是不固定的
--從ComputerSales隨機刪除幾行再測
SELECT AREA,SALESDATE,SALESNUMBER,
  LAG(SalesNumber) OVER (PARTITION BY Area order by SalesDate) AS Lag_error,  --如遇斷號,會導致資料不準
  SUM(SalesNumber) OVER (PARTITION BY AREA ORDER BY SALESDATE RANGE BETWEEN 1 PRECEDING AND 1 PRECEDING) yesterday, --昨天的值  
  SUM(SalesNumber) OVER (PARTITION BY AREA ORDER BY SALESDATE RANGE BETWEEN 6 PRECEDING AND 6 PRECEDING) lastweek, --上週資料  
  SUM(SalesNumber) OVER (PARTITION BY AREA ORDER BY SALESDATE RANGE BETWEEN 6 PRECEDING AND 0 PRECEDING) last7_accu, --前7天累計,包括當天
  SUM(SalesNumber) OVER (PARTITION BY AREA ORDER BY SALESDATE RANGE BETWEEN 29 PRECEDING AND 0 PRECEDING) last30_accu--前30天累計,包括當天
  FROM ComputerSales

--再度增加一個product產品列,以方便進行CUBE函式演示
CREATE TABLE ComputerSalesBAK AS   
SELECT SalesNumber,
       ROUND(SalesNumber*10+5*DBMS_RANDOM.VALUE(1,10)) SalesValue,
       TRUNC(SYSDATE)+MOD(A.DateSEQ-1,24) SalesDate,
       CASE WHEN TRUNC((DateSEQ-1)/24)=1 THEN '華南地區'
            WHEN TRUNC((DateSEQ-1)/24)=2 THEN '華北地區'
            WHEN TRUNC((DateSEQ-1)/24)=3 THEN '東北地區'
            WHEN TRUNC((DateSEQ-1)/24)=4 THEN '華東地區'
            ELSE '其他地區'
       END Area,
       CASE WHEN ROUND(DBMS_RANDOM.VALUE(1,3))=1 THEN '產品A'
            WHEN ROUND(DBMS_RANDOM.VALUE(1,3))=2 THEN '產品B'
            ELSE '產品C'
       END Product      
  FROM (SELECT SalesNumber,ROW_NUMBER() OVER(ORDER BY ROWID) DateSEQ FROM ComputerSales) A;
DROP TABLE ComputerSales;
RENAME ComputerSalesBAK TO ComputerSales;
SELECT * FROM ComputerSales;

--傳統的group by語法
SELECT Product,Area,SalesDate,SUM(SalesNumber),SUM(SalesValue)
  FROM ComputerSales
GROUP BY Product,Area,SalesDate
ORDER BY Product,Area,SalesDate

--ROLLUP (group的欄位順序)
--會自動按Group欄位分層統計,與日常報表較為相似
SELECT Product,Area,SalesDate,SUM(SalesNumber),SUM(SalesValue)
  FROM ComputerSales
GROUP BY ROLLUP(Product,Area,SalesDate)
ORDER BY Product,Area,SalesDate --加不加均可,已經自動按分組欄位排序

--等價於
SELECT * FROM
(
SELECT Product,Area,SalesDate,SUM(SalesNumber) SalesNumber,SUM(SalesValue) SalesValue --最大級分組
  FROM ComputerSales
GROUP BY Product,Area,SalesDate
UNION ALL
SELECT Product,Area,NULL,SUM(SalesNumber),SUM(SalesValue) --按產品、地區分組
  FROM ComputerSales
GROUP BY Product,Area,NULL
UNION ALL
SELECT Product,NULL,NULL,SUM(SalesNumber),SUM(SalesValue) --按產品分組
  FROM ComputerSales
GROUP BY Product,NULL,NULL
UNION ALL  
SELECT NULL,NULL,NULL,SUM(SalesNumber),SUM(SalesValue)   --統計總和
  FROM ComputerSales
GROUP BY NULL,NULL,NULL
) ORDER BY 1,2,3                                         --最後再排序


--CUBE (group的欄位順序),與OLAP比較相似,求得所有維度的交匯點
--會自動按Group欄位排列組合進行統計
SELECT Product,Area,SalesDate,SUM(SalesNumber),SUM(SalesValue)
  FROM ComputerSales
GROUP BY CUBE(Product,Area,SalesDate)
ORDER BY Product,Area,SalesDate --加不加均可,已經自動按分組欄位排序
--兩則的區別
--即ROLLUP 為C(3,1)即多了3層
--按照Product,Area,SalesDate;Product,Area;Product;ALL的順序進行了統計
--CUBE的統計層級則為2的N次方,即全部的有序組合
--按照Product,Area,SalesDate;Product,Area;Product,SalesDate;Product;Area,SalesDate;Area;SalesDate;ALL的順序進行了統計
--與ROLLUP的等價表示式,相當於ROLLUP的排列組合
SELECT * FROM
(
SELECT Product,Area,SalesDate,SUM(SalesNumber),SUM(SalesValue) --先按Product,Area,SalesDate求ROLLUP
  FROM ComputerSales
GROUP BY ROLLUP(Product,Area,SalesDate)
UNION
SELECT Product,NULL,SalesDate,SUM(SalesNumber),SUM(SalesValue) --再按Product,SalesDate求ROLLUP
  FROM ComputerSales
GROUP BY ROLLUP(Product,NULL,SalesDate)
UNION
SELECT NULL,Area,SalesDate,SUM(SalesNumber),SUM(SalesValue) --再按Area,SalesDate求ROLLUP
  FROM ComputerSales
GROUP BY ROLLUP(NULL,Area,SalesDate)
UNION
SELECT NULL,NULL,SalesDate,SUM(SalesNumber),SUM(SalesValue) --最後按SalesDate求ROLLUP
  FROM ComputerSales
GROUP BY ROLLUP(NULL,NULL,SalesDate)
)
ORDER BY 1,2,3

--GROUPING SETS等同於按三列單獨求統計,一般不常用
SELECT Product,Area,SalesDate,SUM(SalesNumber),SUM(SalesValue)
  FROM ComputerSales
GROUP BY GROUPING SETS(Product,Area,SalesDate)
ORDER BY Product,Area,SalesDate ;--加不加均可,已經自動按分組欄位排序
--等價於
SELECT * FROM
(
SELECT Product,NULL Area,NULL SalesDate,SUM(SalesNumber),SUM(SalesValue) --按產品分組
  FROM ComputerSales
GROUP BY Product,NULL,NULL
UNION ALL
SELECT NULL,Area,NULL,SUM(SalesNumber),SUM(SalesValue) --按地區分組
  FROM ComputerSales
GROUP BY NULL,Area,NULL
UNION ALL
SELECT NULL,NULL,SalesDate,SUM(SalesNumber) SalesNumber,SUM(SalesValue) SalesValue --按日期分組
  FROM ComputerSales
GROUP BY NULL,NULL,SalesDate
) ORDER BY 1,2,3     

--GROUPING函式只接受一個引數,引數為資料表的一列。如果該列為空返回1,否則返回0。
--並且它僅能與 GROUP BY,ROLLUP,CUBE,GROUPING SETS 一起使用。
--稍微執行一下,就發現該函式只是為了做BI報表使用的,把統計行變為1,將來用作字串替代
SELECT GROUPING(Product), Product,GROUPING(Area),Area,GROUPING(SalesDate),SalesDate,SUM(SalesNumber),SUM(SalesValue)
  FROM ComputerSales
GROUP BY ROLLUP(Product,Area,SalesDate)
ORDER BY Product,Area,SalesDate ;
--BI標準報表格式
SELECT
  DECODE(ProductFlag,1,'產品彙總',Product),
  DECODE(AreaFlag,1,'地區彙總',Area),
  DECODE(SalesDateFlag,1,'日期彙總',TO_CHAR(SalesDate,'YYYY-MM-DD')),
  SalesNumber,SalesValue
  FROM
(
SELECT
  GROUPING(Product) ProductFlag, Product,
  GROUPING(Area) AreaFlag,Area,
  GROUPING(SalesDate) SalesDateFlag,SalesDate,
  SUM(SalesNumber) SalesNumber,SUM(SalesValue) SalesValue
  FROM ComputerSales
GROUP BY ROLLUP(Product,Area,SalesDate)
ORDER BY Product,Area,SalesDate
)

--GROUPING_ID其實和GROUPING原理差不多,GROUPING引數為單值,且只返回1,1
--GROUPING_ID,則返回按2的指數進行累計得到空值區域的值
SELECT Product,Area,SalesDate,
       GROUPING_ID(Product,Area,SalesDate) GROUPING421,
       GROUPING_ID(Product,Area) GROUPPING21,
       GROUPING_ID(Product) GROUPING1,
       SUM(SalesNumber),
       SUM(SalesValue)
  FROM ComputerSales
GROUP BY ROLLUP(Product,Area,SalesDate)
ORDER BY Product,Area,SalesDate ;--加不加均可,已經自動按分組欄位排序

--GROUP_ID函式可以區分重複分組結果,第1 次出現為0,以後每次出現增1。
--GROUP_ID單獨答應在SELECT 中出現意義不大,常在HAVING 中使用達到過濾重複統計的目的。
SELECT Product,Area,SalesDate,GROUP_ID(),
       SUM(SalesNumber),SUM(SalesValue)
  FROM ComputerSales
GROUP BY CUBE(Product,Area),CUBE(Product,SalesDate)
HAVING GROUP_ID()=0
ORDER BY 1,2,3
--例如該例子中分別按Product,Area和Product,SalesDate會導致產品地區、產品時間的重複計算,導致報表的不清晰
--我們用HAVING GROUP_ID()=0把重複計算的行去掉就OK了
--一般情況下不建議報表程式過度分組,否則到最後連自己都搞糊塗了
--GROUP BY,ROLLUP,CUBE能組合使用,但SELECT中的分組欄位必須出現在GROUP BY的相關欄位

--MODEL:MODEL語句的關鍵字,必須。
--DIMENSION BY: DIMENSION維度的意思,可以理解為陣列的索引,必須。
--MEASURES:指定作為陣列的列
--RULES:對陣列進行各種操作的描述。
--暫時還沒搞明白如何應用,只是簡單實現了一個求上月、前30天、前7天,前1天的例子
SELECT AREA,PRODUCT,SALESDATE,SALESNUMBER,
       AVG30DAY,AVG1MONTH, --最近30天的平均值,最近一個月的平均值
       ACCU30DAY,ACCU1MONTH, --最近30天的累加值,最近一個月的累加值
       SALESNUMBER1DAY,SALESNUMBER7DAY, --昨天的銷售額,一週前的銷售額
       SALESNUMBER30DAY,SALESNUMBER1MONTH  --30天的銷售額,上月同天的銷售額
  FROM ComputerSales
MODEL DIMENSION BY (AREA,PRODUCT,SALESDATE)
MEASURES (SALESNUMBER,0 AVG30DAY,0 AVG1MONTH,0 ACCU30DAY,0 ACCU1MONTH,0 SALESNUMBER1DAY,0 SALESNUMBER7DAY,0 SALESNUMBER30DAY,0 SALESNUMBER1MONTH)
RULES UPDATE
(AVG30DAY[ANY,ANY,ANY]=AVG(SALESNUMBER)[CV(),CV(),SALESDATE BETWEEN CV(SALESDATE)-29 AND CV(SALESDATE)],
  AVG1MONTH[ANY,ANY,ANY]=AVG(SALESNUMBER)[CV(),CV(),SALESDATE BETWEEN ADD_MONTHS(CV(SALESDATE),-1) AND CV(SALESDATE)],
  ACCU30DAY[ANY,ANY,ANY]=SUM(SALESNUMBER)[CV(),CV(),SALESDATE BETWEEN CV(SALESDATE)-30 AND CV(SALESDATE)],
  ACCU1MONTH[ANY,ANY,ANY]=SUM(SALESNUMBER)[CV(),CV(),SALESDATE BETWEEN ADD_MONTHS(CV(SALESDATE),-1) AND CV(SALESDATE)],
  SALESNUMBER1DAY[ANY,ANY,ANY]=MAX(SALESNUMBER)[CV(),CV(),SALESDATE BETWEEN CV(SALESDATE)-1 AND CV(SALESDATE)-1],
  SALESNUMBER7DAY[ANY,ANY,ANY]=MAX(SALESNUMBER)[CV(),CV(),SALESDATE BETWEEN CV(SALESDATE)-7 AND CV(SALESDATE)-7],
  SALESNUMBER30DAY[ANY,ANY,ANY]=MAX(SALESNUMBER)[CV(),CV(),SALESDATE BETWEEN CV(SALESDATE)-30 AND CV(SALESDATE)-30],
  SALESNUMBER1MONTH[ANY,ANY,ANY]=MAX(SALESNUMBER)[CV(),CV(),SALESDATE BETWEEN CV(SALESDATE)-30 AND CV(SALESDATE)-30]  
  )
ORDER BY 1,2,3

[ 本帖最後由 bq_wang 於 2011-6-6 19:01 編輯 ]

來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/6517/viewspace-697234/,如需轉載,請註明出處,否則將追究法律責任。

相關文章