HTAP資料庫PostgreSQL場景與效能測試之26-(OLTP)NOTIN、NOTEXISTS查詢
標籤
PostgreSQL , HTAP , OLTP , OLAP , 場景與效能測試
背景
PostgreSQL是一個歷史悠久的資料庫,歷史可以追溯到1973年,最早由2014計算機圖靈獎得主,關聯式資料庫的鼻祖Michael_Stonebraker 操刀設計,PostgreSQL具備與Oracle類似的功能、效能、架構以及穩定性。
PostgreSQL社群的貢獻者眾多,來自全球各個行業,歷經數年,PostgreSQL 每年釋出一個大版本,以持久的生命力和穩定性著稱。
2017年10月,PostgreSQL 推出10 版本,攜帶諸多驚天特性,目標是勝任OLAP和OLTP的HTAP混合場景的需求:
《最受開發者歡迎的HTAP資料庫PostgreSQL 10特性》
1、多核並行增強
2、fdw 聚合下推
3、邏輯訂閱
4、分割槽
5、金融級多副本
6、json、jsonb全文檢索
7、還有外掛化形式存在的特性,如 向量計算、JIT、SQL圖計算、SQL流計算、分散式平行計算、時序處理、基因測序、化學分析、影像分析 等。
在各種應用場景中都可以看到PostgreSQL的應用:
PostgreSQL近年來的發展非常迅猛,從知名資料庫評測網站dbranking的資料庫評分趨勢,可以看到PostgreSQL向上發展的趨勢:
從每年PostgreSQL中國召開的社群會議,也能看到同樣的趨勢,參與的公司越來越多,分享的公司越來越多,分享的主題越來越豐富,橫跨了 傳統企業、網際網路、醫療、金融、國企、物流、電商、社交、車聯網、共享XX、雲、遊戲、公共交通、航空、鐵路、軍工、培訓、諮詢服務等 行業。
接下來的一系列文章,將給大家介紹PostgreSQL的各種應用場景以及對應的效能指標。
環境
環境部署方法參考:
《PostgreSQL 10 + PostGIS + Sharding(pg_pathman) + MySQL(fdw外部表) on ECS 部署指南(適合新使用者)》
阿里雲 ECS:56核,224G,1.5TB*2 SSD雲盤
。
作業系統:CentOS 7.4 x64
資料庫版本:PostgreSQL 10
PS:ECS的CPU和IO效能相比物理機會打一定的折扣,可以按下降1倍效能來估算。跑物理主機可以按這裡測試的效能乘以2來估算。
場景 – NOT IN、NOT EXISTS 查詢 (OLTP)
1、背景
not in 查詢,多用在排除多個輸入值場景。
實際上PostgreSQL支援很多種排除多個輸入值的語法。
1、not in (...)
2、not in (table or subquery or srf)
3、<> all (array)
4、not exists (select 1 from (values (),(),...) as t(id) where x.?=t.id)
5、<>? and <>? and <>? and .....
6、left join others b on (a.?=b.?) where b.* is null
7、select ? from a except select ? from b
,適用於輸出欄位與條件欄位相同的情形。
他們的執行計劃分別如下,(1億記錄,排除多個輸入值。):
表越大、或Filter的值越多,使用 left join, not exist, except 的效果越好。
postgres=# explain select * from a where id not in (1,2,3,4,5);
QUERY PLAN
--------------------------------------------------------------
Seq Scan on a (cost=0.00..255958.10 rows=10000001 width=45)
Filter: (id <> ALL (`{1,2,3,4,5}`::integer[]))
(2 rows)
postgres=# explain select * from a where id <> all (array[1,2,3,4,5]);
QUERY PLAN
--------------------------------------------------------------
Seq Scan on a (cost=0.00..255958.10 rows=10000001 width=45)
Filter: (id <> ALL (`{1,2,3,4,5}`::integer[]))
(2 rows)
postgres=# explain select * from a where id <> all (array(select generate_series(1,10)));
QUERY PLAN
-------------------------------------------------------------
Seq Scan on a (cost=5.02..318463.15 rows=9999996 width=45)
Filter: (id <> ALL ($0))
InitPlan 1 (returns $0)
-> ProjectSet (cost=0.00..5.02 rows=1000 width=4)
-> Result (cost=0.00..0.01 rows=1 width=0)
(5 rows)
postgres=# explain select * from a where id <> all (array(select id from (values (1),(2),(3),(4),(5)) t (id)));
QUERY PLAN
---------------------------------------------------------------------
Seq Scan on a (cost=0.06..318458.20 rows=9999996 width=45)
Filter: (id <> ALL ($0))
InitPlan 1 (returns $0)
-> Values Scan on "*VALUES*" (cost=0.00..0.06 rows=5 width=4)
(4 rows)
postgres=# explain select * from a where id not in (select id from (values (1),(2),(3),(4),(5)) t (id));
QUERY PLAN
---------------------------------------------------------------------
Seq Scan on a (cost=0.07..218458.15 rows=5000003 width=45)
Filter: (NOT (hashed SubPlan 1))
SubPlan 1
-> Values Scan on "*VALUES*" (cost=0.00..0.06 rows=5 width=4)
(4 rows)
postgres=# explain select * from a where not exists (select 1 from (values (1),(2),(3),(4),(5)) t (id) where t.id=a.id);
QUERY PLAN
-----------------------------------------------------------------------------------
Merge Anti Join (cost=0.56..301364.14 rows=10000001 width=45)
Merge Cond: (a.id = "*VALUES*".column1)
-> Index Scan using a_pkey on a (cost=0.43..276363.92 rows=10000006 width=45)
-> Sort (cost=0.12..0.13 rows=5 width=4)
Sort Key: "*VALUES*".column1
-> Values Scan on "*VALUES*" (cost=0.00..0.06 rows=5 width=4)
(6 rows)
postgres=# explain select * from a where id<>1 and id<>2 and id<>3 and id<>4 and id<>5;
QUERY PLAN
-------------------------------------------------------------------------------
Seq Scan on a (cost=0.00..318458.14 rows=10000001 width=45)
Filter: ((id <> 1) AND (id <> 2) AND (id <> 3) AND (id <> 4) AND (id <> 5))
(2 rows)
postgres=# explain with t1 as (select id from (values (1),(2),(3),(4),(5)) as t(id))
select a.* from a left join t1 b on (a.id=b.id) where b.* is null;
QUERY PLAN
---------------------------------------------------------------------
Hash Left Join (cost=0.23..230958.36 rows=50000 width=45)
Hash Cond: (a.id = b.id)
Filter: (b.* IS NULL)
CTE t1
-> Values Scan on "*VALUES*" (cost=0.00..0.06 rows=5 width=4)
-> Seq Scan on a (cost=0.00..193458.06 rows=10000006 width=45)
-> Hash (cost=0.10..0.10 rows=5 width=32)
-> CTE Scan on t1 b (cost=0.00..0.10 rows=5 width=32)
(8 rows)
postgres=# explain select id from a except select id from (values (1),(2),(3),(4),(5)) as t(id);
QUERY PLAN
-----------------------------------------------------------------------------------------------
SetOp Except (cost=1538166.72..1588166.78 rows=10000006 width=8)
-> Sort (cost=1538166.72..1563166.75 rows=10000011 width=8)
Sort Key: "*SELECT* 1".id
-> Append (cost=0.00..293458.23 rows=10000011 width=8)
-> Subquery Scan on "*SELECT* 1" (cost=0.00..293458.12 rows=10000006 width=8)
-> Seq Scan on a (cost=0.00..193458.06 rows=10000006 width=4)
-> Subquery Scan on "*SELECT* 2" (cost=0.00..0.11 rows=5 width=8)
-> Values Scan on "*VALUES*" (cost=0.00..0.06 rows=5 width=4)
(8 rows)
2、設計
1億記錄,查詢匹配多個輸入值的效能。分別輸入1,10,100,1000,10000,100000,1000000個值作為匹配條件。
1、not in (...)
2、not in (table or subquery or srf)
3、<> all (array)
4、not exists (select 1 from (values (),(),...) as t(id) where x.?=t.id)
5、<>? and <>? and <>? and .....
6、left join others b on (a.?=b.?) where b.* is null
7、select ? from a except select ? from b
,適用於輸出欄位與條件欄位相同的情形。
3、準備測試表
create table t_in_test (id int primary key, info text, crt_time timestamp);
4、準備測試函式(可選)
5、準備測試資料
insert into t_in_test select generate_series(1,100000000), md5(random()::text), clock_timestamp();
6、準備測試指令碼
set parallel_setup_cost =0;
set parallel_tuple_cost =0;
set max_parallel_workers_per_gather =28;
alter table t_in_test set (parallel_workers =28);
1、not in (...)
1,10,100,1000,10000,100000,1000000 個輸入值的測試效能
do language plpgsql $$
declare
arr text;
ts timestamp := clock_timestamp();
mx int8;
begin
for i in 0..6 loop
mx := (1*(10^i))::int8;
select string_agg((random()*100000)::int::text, `,`) into arr from generate_series(1, mx);
ts := clock_timestamp();
execute `select * from t_in_test where id not in (`||arr||`)`;
raise notice `%: %`, mx, clock_timestamp()-ts;
end loop;
end;
$$ ;
2、not in (table or subquery or srf)
1,10,100,1000,10000,100000,1000000 個輸入值的測試效能
do language plpgsql $$
declare
arr text;
ts timestamp := clock_timestamp();
mx int8;
begin
for i in 0..6 loop
mx := (1*(10^i))::int8;
ts := clock_timestamp();
perform * from t_in_test where not id in ( select (random()*100000)::int from generate_series(1, mx) );
raise notice `%: %`, mx, clock_timestamp()-ts;
end loop;
end;
$$ ;
3、<> all (array)
1,10,100,1000,10000,100000,1000000 個輸入值的測試效能
do language plpgsql $$
declare
arr int[];
ts timestamp := clock_timestamp();
mx int8;
begin
for i in 0..6 loop
mx := (1*(10^i))::int8;
select array_agg((random()*100000)::int) into arr from generate_series(1, mx);
ts := clock_timestamp();
perform * from t_in_test where id <> all ( arr );
raise notice `%: %`, mx, clock_timestamp()-ts;
end loop;
end;
$$ ;
4、not exists (select 1 from (values (),(),...) as t(id) where x.?=t.id)
1,10,100,1000,10000,100000,1000000 個輸入值的測試效能
do language plpgsql $$
declare
ts timestamp := clock_timestamp();
mx int8;
begin
for i in 0..6 loop
mx := (1*(10^i))::int8;
ts := clock_timestamp();
perform * from t_in_test where not exists ( select 1 from ( select (random()*100000)::int id from generate_series(1,mx) ) t where t_in_test.id=t.id );
raise notice `%: %`, mx, clock_timestamp()-ts;
end loop;
end;
$$ ;
6、left join others b on (a.?=b.?) where b.* is null
do language plpgsql $$
declare
ts timestamp := clock_timestamp();
mx int8;
begin
for i in 0..6 loop
mx := (1*(10^i))::int8;
ts := clock_timestamp();
perform a.* from t_in_test a left join (select (random()*100000)::int id from generate_series(1,mx)) b on (a.id=b.id) where b.* is null;
raise notice `%: %`, mx, clock_timestamp()-ts;
end loop;
end;
$$ ;
7、select ? from a except select ? from b
,適用於輸出欄位與條件欄位相同的情形。
do language plpgsql $$
declare
ts timestamp := clock_timestamp();
mx int8;
begin
for i in 0..6 loop
mx := (1*(10^i))::int8;
ts := clock_timestamp();
perform a.id from t_in_test a except select (random()*100000)::int id from generate_series(1,mx);
raise notice `%: %`, mx, clock_timestamp()-ts;
end loop;
end;
$$ ;
7、測試
1、not in (...)
1,10,100,1000,10000,100000,1000000 個輸入值的測試效能
NOTICE: 1: 00:00:20.760034
NOTICE: 10: 00:00:27.766224
NOTICE: 100: 00:01:22.95002
NOTICE: 1000: 00:10:16.690793
..........
10000開始很久也沒跑出來。繼續看後面其他方法的測試。
2、not in (table or subquery or srf)
1,10,100,1000,10000,100000,1000000 個輸入值的測試效能
-----
3、<> all (array)
1,10,100,1000,10000,100000,1000000 個輸入值的測試效能
-----
4、not exists (select 1 from (values (),(),...) as t(id) where x.?=t.id)
1,10,100,1000,10000,100000,1000000 個輸入值的測試效能
NOTICE: 1: 00:00:35.253582
NOTICE: 10: 00:00:35.256638
NOTICE: 100: 00:00:35.164034
NOTICE: 1000: 00:00:35.417756
NOTICE: 10000: 00:00:35.205454
NOTICE: 100000: 00:00:35.458987
NOTICE: 1000000: 00:00:35.447743
DO
6、a left join others b on (a.?=b.?) where b.* is null
1,10,100,1000,10000,100000,1000000 個輸入值的測試效能
NOTICE: 1: 00:00:36.474715
NOTICE: 10: 00:00:36.53191
NOTICE: 100: 00:00:36.60439
NOTICE: 1000: 00:00:36.534846
NOTICE: 10000: 00:00:36.574136
NOTICE: 100000: 00:00:36.519582
NOTICE: 1000000: 00:00:37.675594
DO
7、select ? from a except select ? from b
,適用於輸出欄位與條件欄位相同的情形。
1,10,100,1000,10000,100000,1000000 個輸入值的測試效能
NOTICE: 1: 00:00:50.566741
NOTICE: 10: 00:00:50.051715
NOTICE: 100: 00:00:50.098839
NOTICE: 1000: 00:00:49.966196
NOTICE: 10000: 00:00:50.608288
NOTICE: 100000: 00:00:50.715218
NOTICE: 1000000: 00:00:51.794935
DO
TPS
平均響應時間
not exists為例,1億記錄1到100萬個點的排他過濾。
NOTICE: 1: 00:00:35.253582
NOTICE: 10: 00:00:35.256638
NOTICE: 100: 00:00:35.164034
NOTICE: 1000: 00:00:35.417756
NOTICE: 10000: 00:00:35.205454
NOTICE: 100000: 00:00:35.458987
NOTICE: 1000000: 00:00:35.447743
DO
NOTICE: 10: 00:00:35.256638
NOTICE: 100: 00:00:35.164034
NOTICE: 1000: 00:00:35.417756
NOTICE: 10000: 00:00:35.205454
NOTICE: 100000: 00:00:35.458987
NOTICE: 1000000: 00:00:35.447743
DO
參考
《PostgreSQL、Greenplum 應用案例寶典《如來神掌》 – 目錄》
《PostgreSQL 使用 pgbench 測試 sysbench 相關case》
https://www.postgresql.org/docs/10/static/pgbench.html
相關文章
- HTAP資料庫PostgreSQL場景與效能測試之10-(OLTP)字串搜尋-字首查詢資料庫SQL字串
- HTAP資料庫PostgreSQL場景與效能測試之28-(OLTP)高併發點更新資料庫SQL
- HTAP資料庫PostgreSQL場景與效能測試之21-(OLTP+OLAP)排序、建索引資料庫SQL排序索引
- HTAP資料庫PostgreSQL場景與效能測試之15-(OLTP)物聯網-查詢一個時序區間的資料資料庫SQL
- HTAP資料庫PostgreSQL場景與效能測試之40-(OLTP+OLAP)不含索引多表批量寫入資料庫SQL索引
- HTAP資料庫PostgreSQL場景與效能測試之36-(OLTP+OLAP)不含索引單表批量寫入資料庫SQL索引
- HTAP資料庫PostgreSQL場景與效能測試之23-(OLAP)平行計算資料庫SQL
- HTAP資料庫PostgreSQL場景與效能測試之34-(OLTP+OLAP)不含索引單表單點寫入資料庫SQL索引
- HTAP資料庫PostgreSQL場景與效能測試之42-(OLTP+OLAP)unloggedtable不含索引多表批量寫入資料庫SQL索引
- HTAP資料庫PostgreSQL場景與效能測試之43-(OLTP+OLAP)unloggedtable含索引多表批量寫入資料庫SQL索引
- HTAP資料庫及應用場景分析資料庫
- 效能測試場景提取
- Kunlun-Storage vs PostgreSQL OLTP 測試SQL
- openGauss 支援OLTP場景資料壓縮
- cassandra 效能測試場景一
- PostgreSQL:資料庫連結測試SQL資料庫
- SQLServer效能優化之 nolock,大幅提升資料庫查詢效能SQLServer優化資料庫
- 效能測試混合場景計算
- 複雜場景資料處理的 OLTP 與 OLAP 融合實踐
- HTAP資料庫(OLTP+OLAP)-資料庫典型架構優缺點剖析(shardVSshared)資料庫架構
- 混合列壓縮(HCC)在OLAP及OLTP場景中的測試
- 【MySQL】資料庫效能測試MySql資料庫
- NoSQL資料庫效能測試SQL資料庫
- 金融業分散式資料庫選型及HTAP場景實踐分散式資料庫
- 測試驅動開發(TDD)—— 資料庫查詢篇資料庫
- 效能測試之資料庫監控分析工具PMM資料庫
- mysql之 sysbench0.4.12資料庫效能測試MySql資料庫
- 大資料測試與 傳統資料庫測試大資料資料庫
- 最受開發者歡迎的HTAP資料庫PostgreSQL10特性資料庫SQL
- 三體PCC大賽題目-facebook微博like場景資料庫設計與效能壓測資料庫
- 深圳軟體測試學習:【資料庫】-【oracle】-連線查詢資料庫Oracle
- 資料庫之查詢最佳化資料庫
- 資料庫AR之關聯查詢資料庫
- 分散式資料庫的需求與場景分散式資料庫
- PHP 單元測試與資料庫測試PHP資料庫
- Jmeter效能測試場景的建立和執行JMeter
- 效能測試之測試分析與調優
- 效能測試之資料庫監控分析工具Grafana+Prometheus資料庫GrafanaPrometheus