“新一代人工智慧”研究的三大重點方向
1. 新一代人工智慧的基礎理論
聚焦人工智慧重大科學前沿問題, 以突破人工智慧基礎機理、模型和演算法瓶頸為重點, 重點佈局可能引發人工智慧正規化變革的新一代人工智慧基礎理論研究, 為人工智慧持續發展與深度應用提供強大科學儲備。
1.1 新一代神經網路模型
借鑑神經認知機理和機器學習數學方法等, 開展神經網路模型非線性對映、網路結構自動演化、神經元和模組功能特異化、小樣本學習/弱標籤/無標籤樣本學習、可解釋性等新理論和新方法的研究, 本質性提升深度神經網路支撐解決現實人工智慧問題的範圍和能力。
1.2 面向開放環境的自適應感知
針對應用場景變換易導致智慧系統效能急劇下降問題, 發展適應能力強的層次化網路結構、可連續學習的機器學習策略及一般性效能度量方法, 突破無監督學習、經驗記憶利用、內隱知識發現與引導及注意力選擇等難點, 推動形成開放環境和變化場景下的通用型感知智慧。
1.3 跨媒體因果推斷
研究基於跨媒體的人類常識知識形成的機器學習新方法, 並在常識知識支援下對跨媒體資料進行自底向上的深度抽象和歸納, 有效管控不確定性的自頂向下演繹和推理, 建立邏輯推理、歸納推理和直覺頓悟相互協調補充的新模型和方法, 實現跨媒體從智慧的關聯分析向常識知識支援下因果推斷的飛躍。
1.4 非完全資訊條件下的博弈決策
針對人類經濟活動、人機對抗等非完全資訊條件下的博弈特點, 結合機器學習、控制論、博弈論等領域進展, 研究不確定複雜環境下博弈對抗的動力學機制和最佳化決策模型, 把對抗學習和強化學習與動態博弈論進行融合, 實現非完全資訊環境下任務導向的通用智慧基礎模型和動態博弈決策理論。
1.5 群智湧現機理與計算方法
研究開放、動態、複雜環境下的大規模群體協作的組織模式和激勵機制, 建立可表達、可計算、可調控的複合式激勵演算法, 探索個體貢獻匯聚成群體智慧的湧現機理和演化規律, 突破面向全域性目標的群體智慧演進方法和時空敏感的群體智慧協同,實現可預知、可引導和可持續的群體智慧湧現。
1.6 人在迴路的混合增強智慧
研究不確定性、脆弱性和開放性條件下的任務建模、環境建模和人類行為建模, 發展人在迴路的機器學習方法及混合增強智慧評價方法, 把人對複雜問題分析與響應的高階認知機制與機器智慧系統緊密耦合,有效避免由於人工智慧技術的侷限性引發的決策風險和系統失控, 實現複雜問題人機雙向協作和求解收斂。
1.7 複雜製造環境下的人機物協同控制方法
面向離散製造業和流程工業中複雜多維度人機物協同問題, 研究跨層、跨域的分散式網路化協同控制方法, 突破人機物三元協同決策與最佳化理論, 實現人機物的虛實融合與動態排程, 探索無人加工生產線的重構及人機共融智慧互動, 為智慧工廠發展模式探索和標準體系建立提供理論與方法支撐。
2. 面向重大需求的關鍵共性技術
圍繞提升我國人工智慧國際競爭力的迫切需求, 面向重大需求,突破新一代人工智慧關鍵共性技術,以演算法為核心, 資料和硬體為基礎, 全面提升感知識別、知識計算、認知推理、協同控制與操作、人機互動等能力, 形成開放相容、穩定成熟的技術體系。
2.1 可泛化的領域知識學習與計算引擎
面向跨界融合新業態與知識創新服務需求,攻克大規模、綜合性知識中心建立所需要的關鍵技術。突破知識加工、深度搜尋和可視互動等核心技術,形成概念識別、實體發現、屬性預測、知識演化和關係挖掘等能力, 實現知識持續增長的自動化獲取, 形成從資料到知識、從知識到服務的自主歸納和學習能力。在1-2 個知識密集型領域進行服務驗證, 達到或超越領域專家平均問答服務水平。
2.2 跨媒體分析推理技術系統
面向跨媒體內容監管、態勢分析及跨模態醫療分析等重大需求,研究跨媒體多元知識統一表徵理論、模型和獲取方法,構建十億級別以上的適應跨媒體內容演化的知識圖譜和分析推理技術,建立從定向推理到通用推理的泛化機制。在1-2個典型應用場景下實現可回溯、可解釋的跨媒體智慧推理, 準確率超過領域中級專家水平。
2.3 認知任務下的場景主動感知技術
針對複雜環境中的目標搜尋、場景分析和解釋等認知任務,研究自然場景的主動視覺感知、三維建模和定位技術;研究嘈雜場景中聲學環境探測與基於聽覺反饋機理的言語主動感知技術;研究視聽覺協同的從自然場景主動發現新目標及其屬性知識的認知技術。建立典型場景實驗平臺並進行功能驗證。
2.4 面向群體化軟體開發的群智激發匯聚研究
面向群體化軟體開發等大規模複雜群智創新活動,研究群智社群的協同與演化、群智任務的分解與適配等技術; 研究群智創新制品的分析評價、質量控制和複用融合等技術; 研究群智軟體製品的程式碼標註、測試驗證和缺陷修復等技術。研究群智開源社群的群智激發匯聚機理和技術, 推動形成面向特定領域的百萬規模群智創新與人才培養生態, 有力促進人工智慧技術和應用生態的建立。
2.5 人機協同軟硬體技術研究
面向智慧製造和自動駕駛等人機協同應用場景,研究構造軟硬體一體化的人機協同技術平臺。研究適應真實世界情境理解與協同決策的模型與方法;研究從人機協同中混合人類直覺、經驗、行為的新型學習方法; 研製能自然理解環境和情景並能處理大規模知識的新型混合計算架構和智慧軟硬體等。
2.6 無人系統自主智慧精準感知與操控
針對海、陸、空、天無人平臺等自主智慧發展需求,研究無約束環境下的基於多感測器資訊融合的協同感知方法; 研究大範圍場景語義建模和理解方法, 實現複雜環境的地圖構建、透徹感知與動態認知; 研究複雜場景下多源異構感知物件快速精準的分割、檢測、定位、跟蹤和識別方法。建立或利用已有自主智慧系統進行技術驗證, 實現自主智慧無人系統中的自然、精準、安全的互動與精準操控。
2.7 自主智慧體的靈巧精準操作學習
針對複雜無人生產系統中對自主操作的需求,研究基於智慧人機互動的複雜靈巧精確操作技能傳授和高效示範;研究實現對抓取、對準、趨近、裝入等複雜技能的機器學習和技能生成;研究自主智慧體的靈巧作業運動規劃和協調控制,實現從技能到靈巧操作的運動對映;研究多層次操作技能表示方法,實現複雜技能的知識化表達;圍繞精密裝配等典型場景,進行靈巧操作技能學習技術驗證。
3. 智慧晶片與系統
圍繞人工智慧產業發展的關鍵環節和應用生態基礎建設, 從人工智慧創新平臺和基礎支撐角度, 重點研究新型感知器件與系統, 人工神經網路的關鍵技術標準以及人工智慧開源開放平臺。
3.1 新型感知器件與晶片
研究能夠模擬生物視、聽、觸、嗅等感知通道的訊號處理和資訊加工機理,研製新型感知器件、晶片以及相應的神經網路感知資訊表示、處理、分析和識別演算法模型,開發功能類似生物、效能超越生物的感知系統並實現功能驗證。
3.2 神經網路處理器關鍵標準與驗證晶片
設計支援訓練和推理的神經網路計算指令集,制定神經網路表示與壓縮標準,在此基礎上開發高效基礎演算法庫和開發介面標準,實現配套開發工具鏈,建立開放的、不依賴於具體晶片實現方式的晶片平臺標準,實現軟硬體系統介面的統一化。實現支援上述指令集、演算法庫、標準及開發介面的驗證晶片和示例應用。
3.3 人工智慧開源開放基礎平臺與智慧作業系統原型
研究智慧感測器件、智慧處理晶片和智慧控制器等智慧硬體資源管理技術, 開發支援多種異構硬體的人工智慧開源開放基礎平臺。研究智慧演算法、知識庫等智慧軟體和資料資源管理技術, 開發人工智慧通用開源演算法庫、模型庫以及人機互動的基礎軟體平臺。支援大規模智慧任務的分散式分配和排程, 建立激勵創新、有機整合、快速應用的人工智慧開源生態, 支援智慧作業系統等基礎軟體和核心硬體的發展。
來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/29829936/viewspace-2600424/,如需轉載,請註明出處,否則將追究法律責任。
相關文章
- 人工智慧將引領新一代物流技術的發展方向人工智慧
- 新一代人工智慧產業創新重點任務揭榜工作方案人工智慧產業
- 阿里雲ECI不要使用,不是重點方向阿里
- 賈揚清:我對人工智慧方向的一點淺見人工智慧
- 人工智慧的企業家來說,這四個新的方向可能值得重視人工智慧
- 人工智慧的研究熱點:自然語言處理人工智慧自然語言處理
- 人工智慧主要包括哪些研究內容,人工智慧現狀和發展方向是什麼?人工智慧
- 人工智慧的就業方向有哪些?人工智慧就業
- Rust 公佈 2024 年路線圖:重點涉及三個方向Rust
- 量子物理與人工智慧的交叉研究 如何找到發力點?人工智慧
- 疫情後冷庫投資的機遇和方向——原則、策略及重點城市
- 2022年工業網際網路市場值得關注的10個重點方向
- 58安居客研究院:2023年重點城市供地計劃研究
- 人工智慧研究人工智慧
- 當前區塊鏈研究領域的前沿技術和研究方向區塊鏈
- go語言知識點,重點歸納,沿著這些方向,入門沒有問題Go
- 【人工智慧】新一代人工智慧發展白皮書人工智慧
- 畢馬威:人工智慧成為中國風險投資的重點人工智慧
- CRM系統選型的3點方向
- 人工智慧駛入快車道,重點領域已就位!人工智慧
- 4JNET披露最新發展方向 或將重點打造NFT生態平臺
- 盤點品牌傳播常用的話題方向
- 人工智慧是什麼?帶你一次掌握人工智慧的三大重點及三大領域人工智慧
- SAP任命新一代領導團隊,制定未來發展方向
- 人工智慧的幾點思考人工智慧
- 站在歷史的長河上,分析人工智慧的未來的發展方向人工智慧
- 下一步研究目標:盤點NLP領域最具潛力的六大方向
- 賈揚清:如何看待人工智慧方向的重要問題?人工智慧
- 【AIGC未來的發展方向】面向人工智慧的第一步,一文告訴你人工智慧是什麼以及未來的方向分析AIGC人工智慧
- Swift AST的一點研究SwiftAST
- 推薦幾個可以寫到簡歷上的Go方向優質開源專案(需花點心思研究)Go
- 2022 年人工智慧研究排名人工智慧
- 物理學在更高的維度上指引人工智慧發展方向 - quantamagazine人工智慧
- 新手入門的方向如何抉擇,懇求指點
- 智慧警務-重點人員管控系統開發研究方案
- 2021中國社交電商行業發展報告:重點企業研究行業
- 例項介紹人工智慧六大應用方向!人工智慧
- 文字匹配相關方向打卡點總結