深入理解 iOS 開發中的鎖

張星宇發表於2016-10-17

摘要

本文的目的不是介紹 iOS 中各種鎖如何使用,一方面筆者沒有大量的實戰經驗,另一方面這樣的文章相當多,比如 iOS中保證執行緒安全的幾種方式與效能對比iOS 常見知識點(三):Lock。本文也不會詳細介紹鎖的具體實現原理,這會涉及到太多相關知識,筆者不敢誤人子弟。

本文要做的就是簡單的分析 iOS 開發中常見的幾種鎖如何實現,以及優缺點是什麼,為什麼會有效能上的差距,最終會簡單的介紹鎖的底層實現原理。水平有限,如果不慎有誤,歡迎交流指正。同時建議讀者在閱讀本文以前,對 OC 中各種鎖的使用方法先有大概的認識。

在 ibireme 的 不再安全的 OSSpinLock 一文中,有一張圖片簡單的比較了各種鎖的加解鎖效能:

來源:ibireme

本文會按照從上至下(速度由快至慢)的順序分析每個鎖的實現原理。需要說明的是,加解鎖速度不表示鎖的效率,只表示加解鎖操作在執行時的複雜程度,下文會通過具體的例子來解釋。

OSSpinLock

上述文章中已經介紹了 OSSpinLock 不再安全,主要原因發生在低優先順序執行緒拿到鎖時,高優先順序執行緒進入忙等(busy-wait)狀態,消耗大量 CPU 時間,從而導致低優先順序執行緒拿不到 CPU 時間,也就無法完成任務並釋放鎖。這種問題被稱為優先順序反轉。

為什麼忙等會導致低優先順序執行緒拿不到時間片?這還得從作業系統的執行緒排程說起。

現代作業系統在管理普通執行緒時,通常採用時間片輪轉演算法(Round Robin,簡稱 RR)。每個執行緒會被分配一段時間片(quantum),通常在 10-100 毫秒左右。當執行緒用完屬於自己的時間片以後,就會被作業系統掛起,放入等待佇列中,直到下一次被分配時間片。

自旋鎖的實現原理

自旋鎖的目的是為了確保臨界區只有一個執行緒可以訪問,它的使用可以用下面這段虛擬碼來描述:

do {
    Acquire Lock
        Critical section  // 臨界區
    Release Lock
        Reminder section // 不需要鎖保護的程式碼
}複製程式碼

在 Acquire Lock 這一步,我們申請加鎖,目的是為了保護臨界區(Critical Section) 中的程式碼不會被多個執行緒執行。

自旋鎖的實現思路很簡單,理論上來說只要定義一個全域性變數,用來表示鎖的可用情況即可,虛擬碼如下:

bool lock = false; // 一開始沒有鎖上,任何執行緒都可以申請鎖
do {
    while(lock); // 如果 lock 為 true 就一直死迴圈,相當於申請鎖
    lock = true; // 掛上鎖,這樣別的執行緒就無法獲得鎖
        Critical section  // 臨界區
    lock = false; // 相當於釋放鎖,這樣別的執行緒可以進入臨界區
        Reminder section // 不需要鎖保護的程式碼        
}複製程式碼

註釋寫得很清楚,就不再逐行分析了。可惜這段程式碼存在一個問題: 如果一開始有多個執行緒同時執行 while 迴圈,他們都不會在這裡卡住,而是繼續執行,這樣就無法保證鎖的可靠性了。解決思路也很簡單,只要確保申請鎖的過程是原子操作即可。

原子操作

狹義上的原子操作表示一條不可打斷的操作,也就是說執行緒在執行操作過程中,不會被作業系統掛起,而是一定會執行完。在單處理器環境下,一條彙編指令顯然是原子操作,因為中斷也要通過指令來實現。

然而在多處理器的情況下,能夠被多個處理器同時執行的操作任然算不上原子操作。因此,真正的原子操作必須由硬體提供支援,比如 x86 平臺上如果在指令前面加上 “LOCK” 字首,對應的機器碼在執行時會把匯流排鎖住,使得其他 CPU不能再執行相同操作,從而從硬體層面確保了操作的原子性。

這些非常底層的概念無需完全掌握,我們只要知道上述申請鎖的過程,可以用一個原子性操作 test_and_set 來完成,它用虛擬碼可以這樣表示:

bool test_and_set (bool *target) {
    bool rv = *target; 
    *target = TRUE; 
    return rv;
}複製程式碼

這段程式碼的作用是把 target 的值設定為 1,並返回原來的值。當然,在具體實現時,它通過一個原子性的指令來完成。

自旋鎖的總結

至此,自旋鎖的實現原理就很清楚了:

bool lock = false; // 一開始沒有鎖上,任何執行緒都可以申請鎖
do {
    while(test_and_set(&lock); // test_and_set 是一個原子操作
        Critical section  // 臨界區
    lock = false; // 相當於釋放鎖,這樣別的執行緒可以進入臨界區
        Reminder section // 不需要鎖保護的程式碼        
}複製程式碼

如果臨界區的執行時間過長,使用自旋鎖不是個好主意。之前我們介紹過時間片輪轉演算法,執行緒在多種情況下會退出自己的時間片。其中一種是用完了時間片的時間,被作業系統強制搶佔。除此以外,當執行緒進行 I/O 操作,或進入睡眠狀態時,都會主動讓出時間片。顯然在 while 迴圈中,執行緒處於忙等狀態,白白浪費 CPU 時間,最終因為超時被作業系統搶佔時間片。如果臨界區執行時間較長,比如是檔案讀寫,這種忙等是毫無必要的。

訊號量

之前我在 介紹 GCD 底層實現的文章 中簡單描述了訊號量 dispatch_semaphore_t 的實現原理,它最終會呼叫到 sem_wait 方法,這個方法在 glibc 中被實現如下:

int sem_wait (sem_t *sem) {
  int *futex = (int *) sem;
  if (atomic_decrement_if_positive (futex) > 0)
    return 0;
  int err = lll_futex_wait (futex, 0);
    return -1;
)複製程式碼

首先會把訊號量的值減一,並判斷是否大於零。如果大於零,說明不用等待,所以立刻返回。具體的等待操作在 lll_futex_wait 函式中實現,lll 是 low level lock 的簡稱。這個函式通過彙編程式碼實現,呼叫到 SYS_futex 這個系統呼叫,使執行緒進入睡眠狀態,主動讓出時間片,這個函式在互斥鎖的實現中,也有可能被用到。

主動讓出時間片並不總是代表效率高。讓出時間片會導致作業系統切換到另一個執行緒,這種上下文切換通常需要 10 微秒左右,而且至少需要兩次切換。如果等待時間很短,比如只有幾個微秒,忙等就比執行緒睡眠更高效。

可以看到,自旋鎖和訊號量的實現都非常簡單,這也是兩者的加解鎖耗時分別排在第一和第二的原因。再次強調,加解鎖耗時不能準確反應出鎖的效率(比如時間片切換就無法發生),它只能從一定程度上衡量鎖的實現複雜程度。

pthread_mutex

pthread 表示 POSIX thread,定義了一組跨平臺的執行緒相關的 API,pthread_mutex 表示互斥鎖。互斥鎖的實現原理與訊號量非常相似,不是使用忙等,而是阻塞執行緒並睡眠,需要進行上下文切換。

互斥鎖的常見用法如下:

pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL);  // 定義鎖的屬性

pthread_mutex_t mutex;
pthread_mutex_init(&mutex, &attr) // 建立鎖

pthread_mutex_lock(&mutex); // 申請鎖
    // 臨界區
pthread_mutex_unlock(&mutex); // 釋放鎖複製程式碼

對於 pthread_mutex 來說,它的用法和之前沒有太大的改變,比較重要的是鎖的型別,可以有 PTHREAD_MUTEX_NORMALPTHREAD_MUTEX_ERRORCHECKPTHREAD_MUTEX_RECURSIVE 等等,具體的特性就不做解釋了,網上有很多相關資料。

一般情況下,一個執行緒只能申請一次鎖,也只能在獲得鎖的情況下才能釋放鎖,多次申請鎖或釋放未獲得的鎖都會導致崩潰。假設在已經獲得鎖的情況下再次申請鎖,執行緒會因為等待鎖的釋放而進入睡眠狀態,因此就不可能再釋放鎖,從而導致死鎖。

然而這種情況經常會發生,比如某個函式申請了鎖,在臨界區內又遞迴呼叫了自己。辛運的是 pthread_mutex 支援遞迴鎖,也就是允許一個執行緒遞迴的申請鎖,只要把 attr 的型別改成 PTHREAD_MUTEX_RECURSIVE 即可。

互斥鎖的實現

互斥鎖在申請鎖時,呼叫了 pthread_mutex_lock 方法,它在不同的系統上實現各有不同,有時候它的內部是使用訊號量來實現,即使不用訊號量,也會呼叫到 lll_futex_wait 函式,從而導致執行緒休眠。

上文說到如果臨界區很短,忙等的效率也許更高,所以在有些版本的實現中,會首先嚐試一定次數(比如 1000 次)的 test_and_test,這樣可以在錯誤使用互斥鎖時提高效能。

另外,由於 pthread_mutex 有多種型別,可以支援遞迴鎖等,因此在申請加鎖時,需要對鎖的型別加以判斷,這也就是為什麼它和訊號量的實現類似,但效率略低的原因。

NSLock

NSLock 是 Objective-C 以物件的形式暴露給開發者的一種鎖,它的實現非常簡單,通過巨集,定義了 lock 方法:

#define    MLOCK 
- (void) lock
{
  int err = pthread_mutex_lock(&_mutex);
  // 錯誤處理 ……
}複製程式碼

NSLock 只是在內部封裝了一個 pthread_mutex,屬性為 PTHREAD_MUTEX_ERRORCHECK,它會損失一定效能換來錯誤提示。

這裡使用巨集定義的原因是,OC 內部還有其他幾種鎖,他們的 lock 方法都是一模一樣,僅僅是內部 pthread_mutex 互斥鎖的型別不同。通過巨集定義,可以簡化方法的定義。

NSLockpthread_mutex 略慢的原因在於它需要經過方法呼叫,同時由於快取的存在,多次方法呼叫不會對效能產生太大的影響。

NSCondition

NSCondition 的底層是通過條件變數(condition variable) pthread_cond_t 來實現的。條件變數有點像訊號量,提供了執行緒阻塞與訊號機制,因此可以用來阻塞某個執行緒,並等待某個資料就緒,隨後喚醒執行緒,比如常見的生產者-消費者模式。

如何使用條件變數

很多介紹 pthread_cond_t 的文章都會提到,它需要與互斥鎖配合使用:

void consumer () { // 消費者
    pthread_mutex_lock(&mutex);
    while (data == NULL) {
        pthread_cond_wait(&condition_variable_signal, &mutex); // 等待資料
    }
    // --- 有新的資料,以下程式碼負責處理 ↓↓↓↓↓↓
    // temp = data;
    // --- 有新的資料,以上程式碼負責處理 ↑↑↑↑↑↑
    pthread_mutex_unlock(&mutex);
}

void producer () {
    pthread_mutex_lock(&mutex);
    // 生產資料
    pthread_cond_signal(&condition_variable_signal); // 發出訊號給消費者,告訴他們有了新的資料
    pthread_mutex_unlock(&mutex);
}複製程式碼

自然我們會有疑問:“如果不用互斥鎖,只用條件變數會有什麼問題呢?”。問題在於,temp = data; 這段程式碼不是執行緒安全的,也許在你把 data 讀出來以前,已經有別的執行緒修改了資料。因此我們需要保證消費者拿到的資料是執行緒安全的。

wait 方法除了會被 signal 方法喚醒,有時還會被虛假喚醒,所以需要這裡 while 迴圈中的判斷來做二次確認。

為什麼要使用條件變數

介紹條件變數的文章非常多,但大多都對一個一個基本問題避而不談:“為什麼要用條件變數?它僅僅是控制了執行緒的執行順序,用訊號量或者互斥鎖能不能模擬出類似效果?”

網上的相關資料比較少,我簡單說一下個人看法。訊號量可以一定程度上替代 condition,但是互斥鎖不行。在以上給出的生產者-消費者模式的程式碼中, pthread_cond_wait 方法的本質是鎖的轉移,消費者放棄鎖,然後生產者獲得鎖,同理,pthread_cond_signal 則是一個鎖從生產者到消費者轉移的過程。

如果使用互斥鎖,我們需要把程式碼改成這樣:

void consumer () { // 消費者
    pthread_mutex_lock(&mutex);
    while (data == NULL) {
        pthread_mutex_unlock(&mutex);
        pthread_mutex_lock(&another_lock)  // 相當於 wait 另一個互斥鎖
        pthread_mutex_lock(&mutex);
    }
    pthread_mutex_unlock(&mutex);
}複製程式碼

這樣做存在的問題在於,在等待 another_lock 之前, 生產者有可能先執行程式碼, 從而釋放了 another_lock。也就是說,我們無法保證釋放鎖和等待另一個鎖這兩個操作是原子性的,也就無法保證“先等待、後釋放 another_lock” 這個順序。

用訊號量則不存在這個問題,因為訊號量的等待和喚醒並不需要滿足先後順序,訊號量只表示有多少個資源可用,因此不存在上述問題。然而與 pthread_cond_wait 保證的原子性鎖轉移相比,使用訊號量似乎存在一定風險(暫時沒有查到非原子性操作有何不妥)。

不過,使用 condition 有一個好處,我們可以呼叫 pthread_cond_broadcast 方法通知所有等待中的消費者,這是使用訊號量無法實現的。

NSCondition 的做法

NSCondition 其實是封裝了一個互斥鎖和條件變數, 它把前者的 lock 方法和後者的 wait/signal 統一在 NSCondition 物件中,暴露給使用者:

- (void) signal {
  pthread_cond_signal(&_condition);
}

// 其實這個函式是通過巨集來定義的,展開後就是這樣
- (void) lock {
  int err = pthread_mutex_lock(&_mutex);
}複製程式碼

它的加解鎖過程與 NSLock 幾乎一致,理論上來說耗時也應該一樣(實際測試也是如此)。在圖中顯示它耗時略長,我猜測有可能是測試者在每次加解鎖的前後還附帶了變數的初始化和銷燬操作。

NSRecursiveLock

上文已經說過,遞迴鎖也是通過 pthread_mutex_lock 函式來實現,在函式內部會判斷鎖的型別,如果顯示是遞迴鎖,就允許遞迴呼叫,僅僅將一個計數器加一,鎖的釋放過程也是同理。

NSRecursiveLockNSLock 的區別在於內部封裝的 pthread_mutex_t 物件的型別不同,前者的型別為 PTHREAD_MUTEX_RECURSIVE

NSConditionLock

NSConditionLock 藉助 NSCondition 來實現,它的本質就是一個生產者-消費者模型。“條件被滿足”可以理解為生產者提供了新的內容。NSConditionLock 的內部持有一個 NSCondition 物件,以及 _condition_value 屬性,在初始化時就會對這個屬性進行賦值:

// 簡化版程式碼
- (id) initWithCondition: (NSInteger)value {
    if (nil != (self = [super init])) {
        _condition = [NSCondition new]
        _condition_value = value;
    }
    return self;
}複製程式碼

它的 lockWhenCondition 方法其實就是消費者方法:

- (void) lockWhenCondition: (NSInteger)value {
    [_condition lock];
    while (value != _condition_value) {
        [_condition wait];
    }
}複製程式碼

對應的 unlockWhenCondition 方法則是生產者,使用了 broadcast 方法通知了所有的消費者:

- (void) unlockWithCondition: (NSInteger)value {
    _condition_value = value;
    [_condition broadcast];
    [_condition unlock];
}複製程式碼

@synchronized

這其實是一個 OC 層面的鎖, 主要是通過犧牲效能換來語法上的簡潔與可讀。

我們知道 @synchronized 後面需要緊跟一個 OC 物件,它實際上是把這個物件當做鎖來使用。這是通過一個雜湊表來實現的,OC 在底層使用了一個互斥鎖的陣列(你可以理解為鎖池),通過對物件去雜湊值來得到對應的互斥鎖。

具體的實現原理可以參考這篇文章: 關於 @synchronized,這兒比你想知道的還要多

參考資料

  1. pthread_mutex_lock
  2. ThreadSafety
  3. Difference between binary semaphore and mutex
  4. 關於 @synchronized,這兒比你想知道的還要多
  5. pthread_mutex_lock.c 原始碼
  6. [Pthread] Linux中的執行緒同步機制(二)–In Glibc
  7. pthread的各種同步機制
  8. pthread_cond_wait
  9. Conditional Variable vs Semaphore

相關文章