不定積分有如下兩個基本性質
property 1
兩個函式之和(差)的不定積分,等於這兩個函式不定積分的和(差),即:
\[\int [f(x)\pm g(x)]dx = \int f(x)dx \pm \int g(x)dx,
\quad \quad \quad (0.0)
\]
要證明式子(0.0)成立,首先要證明式子(0.0)右側是左側被積函式\(f(x)\pm g(x)\)的原函式,
為此將式子(0.0)右側對\(x\)求導,得:
\[\begin{align}
[\int f(x)dx \pm \int g(x)dx]'=[\int f(x)dx]'\pm[\int g(x)dx]'
\\ \\
[F(x)+C]'\pm[G(x)+C]'=F'(x)\pm G'(x)
\\ \\
\because F(x) 是f(x)的原函式, \enspace 即: \enspace F'(x) = f(x)
\\
G(x)同理也是
\\ \\
\therefore F'(x)\pm G'(x)=f(x)\pm g(x)
\\ \\
\because [\int f(x)dx \pm \int g(x)dx]' = f(x)\pm g(x)
\\
\therefore \int f(x)dx \pm \int g(x)dx 是 [f(x)\pm g(x)] 的原函式
\\ \\
即: \int [f(x)\pm g(x)]dx=\int f(x)dx \pm \int g(x)dx
\\
證明成立
\end{align}
\]
property 2
被積函式中不為零的常數因子可以提到積分號外面,即:
\[
\int kf(x)dx=k\int f(x)dx, \quad (k為常數,且k\ne 0)
\]