import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from PIL import Image import label_map_util import visualization_utils as vis_util PATH_TO_CKPT = 'ssd_mobilenet_v1_coco_2018_01_28/frozen_inference_graph.pb' PATH_TO_LABELS = 'data/mscoco_label_map.pbtxt' NUM_CLASSES = 90 detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: od_graph_def.ParseFromString(fid.read()) tf.import_graph_def(od_graph_def, name='') label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True) category_index = label_map_util.create_category_index(categories) def load_image_into_numpy_array(image): (im_width, im_height) = image.size return np.array(image.getdata()).reshape((im_height, im_width, 3)).astype(np.uint8) TEST_IMAGE_PATHS = ['test_data/image1.jpg'] with detection_graph.as_default(): with tf.Session(graph=detection_graph) as sess: image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0') detection_scores = detection_graph.get_tensor_by_name('detection_scores:0') detection_classes = detection_graph.get_tensor_by_name('detection_classes:0') num_detections = detection_graph.get_tensor_by_name('num_detections:0') for image_path in TEST_IMAGE_PATHS: image = Image.open(image_path) image_np = load_image_into_numpy_array(image) image_np_expanded = np.expand_dims(image_np, axis=0) (boxes, scores, classes, num) = sess.run( [detection_boxes, detection_scores, detection_classes, num_detections], feed_dict={image_tensor: image_np_expanded}) vis_util.visualize_boxes_and_labels_on_image_array(image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8) plt.figure(figsize=[12, 8]) plt.imshow(image_np) plt.show()
import numpy as np import tensorflow as tf import cv2 import label_map_util import visualization_utils as vis_util cap = cv2.VideoCapture('test_data/test_video.mp4') ret, image_np = cap.read() out = cv2.VideoWriter('output_video.mp4', -1, cap.get(cv2.CAP_PROP_FPS), (image_np.shape[1], image_np.shape[0])) PATH_TO_CKPT = 'ssd_mobilenet_v1_coco_2018_01_28/frozen_inference_graph.pb' PATH_TO_LABELS = 'data/mscoco_label_map.pbtxt' NUM_CLASSES = 90 detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: od_graph_def.ParseFromString(fid.read()) tf.import_graph_def(od_graph_def, name='') label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True) category_index = label_map_util.create_category_index(categories) with detection_graph.as_default(): with tf.Session(graph=detection_graph) as sess: image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0') detection_scores = detection_graph.get_tensor_by_name('detection_scores:0') detection_classes = detection_graph.get_tensor_by_name('detection_classes:0') num_detections = detection_graph.get_tensor_by_name('num_detections:0') while cap.isOpened(): ret, image_np = cap.read() if len((np.array(image_np)).shape) == 0: break image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB) image_np_expanded = np.expand_dims(image_np, axis=0) (boxes, scores, classes, num) = sess.run( [detection_boxes, detection_scores, detection_classes, num_detections], feed_dict={image_tensor: image_np_expanded}) vis_util.visualize_boxes_and_labels_on_image_array(image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8) out.write(cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)) cap.release() out.release() cv2.destroyAllWindows()