【效能調優】Oracle AWR報告指標全解析

記錄每一次錯誤發表於2020-12-17

啥是AWR?

======================================================================================

 

AWR (Automatic Workload Repository)

一堆歷史效能資料,放在SYSAUX表空間上, AWR和SYSAUX都是10g出現的,是Oracle調優的關鍵特性; 大約1999年左右開始開發,已經有15年曆史

預設快照間隔1小時,10g儲存7天、11g儲存8天; 可以通過DBMS_WORKLOAD_REPOSITORY.MODIFY_SNAPSHOT_SETTINGS修改

DBA_HIST_WR_CONTROL

AWR程式核心是dbms_workload_repository包

@?/rdbms/admin/awrrpt    本例項

@?/rdbms/admin/awrrpti   RAC中選擇例項號

 

 

 

誰維護AWR?

 

 

主要是MMON(Manageability Monitor Process)和它的小工程式(m00x)

MMON的功能包括:
1.啟動slave程式m00x去做AWR快照
2.當某個度量閥值被超過時發出alert告警
3.為最近改變過的SQL物件捕獲指標資訊

 

 

AWR小技巧

 

 

手動執行一個快照:

Exec dbms_workload_repository.create_snapshot; (這個要背出來哦,用的時候去翻手冊,丟臉哦 J!)

建立一個AWR基線

Exec DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE(start_snap_id,end_snap_id ,baseline_name);

@?/rdbms/admin/awrddrpt     AWR比對報告

@?/rdbms/admin/awrgrpt       RAC 全域性AWR

自動生成AWR HTML報告:

http://www.oracle-base.com/dba/10g/generate_multiple_awr_reports.sql

 

 

 

1、報告總結

 

 

 

WORKLOAD REPOSITORY report for

DB Name         DB Id    Instance     Inst Num Startup Time    Release     RAC
------------ ----------- ------------ -------- --------------- ----------- ---
MAC           2629627371 askmaclean.com            1 22-Jan-13 16:49 11.2.0.3.0  YES

Host Name        Platform                         CPUs Cores Sockets Memory(GB)
---------------- -------------------------------- ---- ----- ------- ----------
MAC10            AIX-Based Systems (64-bit)        128    32             320.00

              Snap Id      Snap Time      Sessions Curs/Sess
            --------- ------------------- -------- ---------
Begin Snap:      5853 23-Jan-13 15:00:56     3,520       1.8
  End Snap:      5854 23-Jan-13 15:30:41     3,765       1.9  Elapsed:               29.75 (mins)  DB Time:            7,633.76 (mins)

 

 

 

Elapsed 為該AWR效能報告的時間跨度(自然時間的跨度,例如前一個快照snapshot是4點生成的,後一個快照snapshot是6點生成的,則若使用@?/rdbms/admin/awrrpt 指令碼中指定這2個快照的話,那麼其elapsed = (6-4)=2 個小時),一個AWR效能報告 至少需要2個AWR snapshot效能快照才能生成 ( 注意這2個快照時間 例項不能重啟過,否則指定這2個快照生成AWR效能報告 會報錯),AWR效能報告中的 指標往往是 後一個快照和前一個快照的 指標的delta,這是因為 累計值並不能反映某段時間內的系統workload。

 

 

DB TIME= 所有前臺session花費在database呼叫上的總和時間:

  • 注意是前臺程式foreground sessions
  • 包括CPU時間、IO Time、和其他一系列非空閒等待時間,別忘了cpu on queue time

DB TIME 不等於 響應時間,DB TIME高了未必響應慢,DB TIME低了未必響應快

DB Time描繪了資料庫總體負載,但要和elapsed time逝去時間結合其他來。

Average Active Session AAS= DB time/Elapsed Time
DB Time =60 min , Elapsed Time =60 min AAS=60/60=1 負載一般
DB Time= 1min , Elapsed Time= 60 min AAS= 1/60 負載很輕
DB Time= 60000 min,Elapsed Time= 60 min AAS=1000  系統hang了吧?

 

 

DB TIME= DB CPU + Non-Idle Wait +  Wait on CPU queue

 

如果僅有2個邏輯CPU,而2個session在60分鐘都沒等待事件,一直跑在CPU上,那麼:

 

DB CPU= 2 * 60 mins  , DB Time = 2* 60 + 0 + 0 =120

AAS = 120/60=2  正好等於OS load 2。

如果有3個session都100%僅消耗CPU,那麼總有一個要wait on queue

DB CPU = 2* 60 mins  ,wait on CPU queue= 60 mins

AAS= (120+ 60)/60=3 主機load 亦為3,此時vmstat 看waiting for run time

 

真實世界中?  DB Cpu = xx mins , Non-Idle Wait= enq:TX + cursor pin S on X + latch : xxx + db file sequential read + ……….. 阿貓阿狗

 

 

 1-1  記憶體引數大小

 

 

Cache Sizes                       Begin        End
~~~~~~~~~~~                  ---------- ----------
               Buffer Cache:    49,152M    49,152M  Std Block Size:         8K
           Shared Pool Size:    13,312M    13,312M      Log Buffer:   334,848K

 

 

記憶體管理方式:MSMM、ASMM(sga_target)、AMM(memory_target)

 

小記憶體有小記憶體的問題, 大記憶體有大記憶體的麻煩! ORA-04031???!!

 

Buffer cache和shared pool size的 begin/end值在ASMM、AMM和11gR2 MSMM下可是會動的哦!

 

這裡說 shared pool一直收縮,則在shrink過程中一些row cache 物件被lock住可能導致前臺row cache lock等解析等待,最好別讓shared pool shrink。如果這裡shared pool一直在grow,那說明shared pool原有大小不足以滿足需求(可能是大量硬解析),結合下文的解析資訊和SGA breakdown來一起診斷問題。

 

 

1-2   Load Profile

 

 

Load Profile              Per Second    Per Transaction   Per Exec   Per Call
~~~~~~~~~~~~         ---------------    --------------- ---------- ----------
      DB Time(s):              256.6                0.2       0.07       0.03
       DB CPU(s):                3.7                0.0       0.00       0.00
       Redo size:        1,020,943.0              826.5
   Logical reads:          196,888.0              159.4
   Block changes:            6,339.4                5.1
  Physical reads:            5,076.7                4.1
 Physical writes:              379.2                0.3
      User calls:           10,157.4                8.2
          Parses:              204.0                0.2
     Hard parses:                0.9                0.0
W/A MB processed:                5.0                0.0
          Logons:                1.7                0.0
        Executes:            3,936.6                3.2
       Rollbacks:            1,126.3                0.9
    Transactions:            1,235.3

  % Blocks changed per Read:   53.49    Recursive Call %:    98.04
 Rollback per transaction %:   36.57       Rows per Sort:    73.70

 

 

 

 

 

指標 指標含義
redo size 單位 bytes,redo size可以用來估量update/insert/delete的頻率,大的redo size往往對lgwr寫日誌,和arch歸檔造成I/O壓力, Per Transaction可以用來分辨是  大量小事務, 還是少量大事務。如上例每秒redo 約1MB ,每個事務800 位元組,符合OLTP特徵
Logical Read 單位  次數*塊數, 相當於 “人*次”, 如上例  196,888 * db_block_size=1538MB/s , 邏輯讀耗CPU,主頻和CPU核數都很重要,邏輯讀高則DB CPU往往高,也往往可以看到latch: cache buffer chains等待。  大量OLTP系統(例如siebel)可以高達幾十乃至上百Gbytes。
Block changes 單位 次數*塊數 , 描繪資料變化頻率
Physical Read 單位次數*塊數, 如上例 5076 * 8k = 39MB/s, 物理讀消耗IO讀,體現在IOPS和吞吐量等不同緯度上;但減少物理讀可能意味著消耗更多CPU。好的儲存 每秒物理讀能力達到幾GB,例如Exadata。  這個physical read包含了physical reads cache和physical reads direct
Physical writes 單位  次數*塊數,主要是DBWR寫datafile,也有direct path write。 dbwr長期寫出慢會導致定期log file switch(checkpoint no complete) 檢查點無法完成的前臺等待。  這個physical write 包含了physical writes direct +physical writes from cache
User Calls 單位次數,使用者呼叫數,more details from internal
Parses 解析次數,包括軟解析+硬解析,軟解析優化得不好,則誇張地說幾乎等於每秒SQL執行次數。 即執行解析比1:1,而我們希望的是 解析一次 到處執行哦!
Hard Parses 萬惡之源. Cursor pin s on X, library cache: mutex X , latch: row cache objects /shared pool……………..。 硬解析最好少於每秒20次
W/A MB processed 單位MB  W/A workarea  workarea中處理的資料數量
結合 In-memory Sort%, sorts (disk) PGA Aggr一起看
Logons 登陸次數, logon storm 登陸風暴,結合AUDIT審計資料一起看。短連線的附帶效應是遊標快取無用
Executes 執行次數,反應執行頻率
Rollback 回滾次數, 反應回滾頻率, 但是這個指標不太精確,參考而已,別太當真
Transactions 每秒事務數,是資料庫層的TPS,可以看做壓力測試或比對效能時的一個指標,孤立看無意義
% Blocks changed per Read 每次邏輯讀導致資料塊變化的比率;如果’redo size’, ‘block changes’ ‘pct of blocks changed per read’三個指標都很高,則說明系統正執行大量insert/update/delete;
pct of blocks changed per read =  (block changes ) /( logical reads)
Recursive Call % 遞迴呼叫的比率;Recursive Call % = (recursive calls)/(user calls)
Rollback per transaction % 事務回滾比率。  Rollback per transaction %= (rollback)/(transactions)
Rows per Sort 平均每次排序涉及到的行數 ;  Rows per Sort= ( sorts(rows) ) / ( sorts(disk) + sorts(memory))

 

注意這些Load Profile 負載指標 在本環節提供了 2個維度 per second 和 per transaction。

per Second:   主要是把 快照內的delta值除以 快站時間的秒數 , 例如 在 A快照中V$SYSSTAT檢視反應 table scans (long tables) 這個指標是 100 ,在B快照中V$SYSSTAT檢視反應 table scans (long tables) 這個指標是 3700, 而A快照和B快照 之間 間隔了一個小時 3600秒,  則  對於  table scans (long tables) per second  就是 (  3700- 100) /3600=1。

pert Second是我們審視資料的主要維度 ,任何效能資料脫離了 時間模型則毫無意義。

在statspack/AWR出現之前 的調優 洪荒時代, 有很多DBA 依賴 V$SYSSTAT等檢視中的累計 統計資訊來調優,以當前的調優眼光來看,那無異於刀耕火種。

 

per transaction  :  基於事務的維度, 與per second相比 是把除數從時間的秒數改為了該段時間內的事務數。 這個維度的很大使用者是用來 識別應用特性的變化 ,若2個AWR效能報告中該維度指標 出現了大幅變化,例如 redo size從本來per transaction  1k變化為  10k per transaction,則說明SQL業務邏輯肯定發生了某些變化。

 

注意AWR中的這些指標 並不僅僅用來孤立地瞭解 Oracle資料庫負載情況, 實施調優工作。   對於 故障診斷 例如HANG、Crash等, 完全可以通過對比問題時段的效能報告和常規時間來對比,通過各項指標的對比往往可以找出 病灶所在。

 

SELECT VALUE FROM DBA_HIST_SYSSTAT WHERE SNAP_ID = :B4 AND DBID = :B3 AND INSTANCE_NUMBER = :B2 AND STAT_NAME  in ( "db block changes","user calls","user rollbacks","user commits",redo size","physical reads direct","physical writes","parse count (hard)","parse count (total)","session logical reads","recursive calls","redo log space requests","redo entries","sorts (memory)","sorts (disk)","sorts (rows)","logons cumulative","parse time cpu","parse time elapsed","execute count","logons current","opened cursors current","DBWR fusion writes","gcs messages sent","ges messages sent","global enqueue gets sync","global enqueue get time","gc cr blocks received","gc cr block receive time","gc current blocks received","gc current block receive time","gc cr blocks served","gc cr block build time","gc cr block flush time","gc cr block send time","gc current blocks served","gc current block pin time","gc current block flush time","gc current block send time","physical reads","physical reads direct (lob)",

SELECT TOTAL_WAITS FROM DBA_HIST_SYSTEM_EVENT WHERE SNAP_ID = :B4 AND DBID = :B3 AND INSTANCE_NUMBER = :B2 AND EVENT_NAME in ("gc buffer busy","buffer busy waits"

SELECT VALUE FROM DBA_HIST_SYS_TIME_MODEL WHERE DBID = :B4 AND SNAP_ID = :B3 AND INSTANCE_NUMBER = :B2 AND STAT_NAME  in  ("DB CPU","sql execute elapsed time","DB time"

SELECT VALUE FROM DBA_HIST_PARAMETER WHERE SNAP_ID = :B4 AND DBID = :B3 AND INSTANCE_NUMBER = :B2 AND PARAMETER_NAME  in ("__db_cache_size","__shared_pool_size","sga_target","pga_aggregate_target","undo_management","db_block_size","log_buffer","timed_statistics","statistics_level"

SELECT BYTES FROM DBA_HIST_SGASTAT WHERE SNAP_ID = :B4 AND DBID = :B3 AND INSTANCE_NUMBER = :B2 AND POOL IN ('shared pool', 'all pools') AND NAME  in ("free memory",

SELECT BYTES FROM DBA_HIST_SGASTAT WHERE SNAP_ID = :B4 AND DBID = :B3 AND INSTANCE_NUMBER = :B2 AND NAME = :B1 AND POOL IS NULL

SELECT (E.BYTES_PROCESSED - B.BYTES_PROCESSED) FROM DBA_HIST_PGA_TARGET_ADVICE B, DBA_HIST_PGA_TARGET_ADVICE E WHERE B.DBID = :B4 AND B.SNAP_ID = :B3 AND B.INSTANCE_NUM
BER = :B2 AND B.ADVICE_STATUS = 'ON' AND E.DBID = B.DBID AND E.SNAP_ID = :B1 AND E.INSTANCE_NUMBER = B.INSTANCE_NUMBER AND E.PGA_TARGET_FACTOR = 1 AND B.PGA_TARGET_FACT
OR = 1 AND E.ADVICE_STATUS = 'ON'

SELECT SUM(E.TOTAL_WAITS - NVL(B.TOTAL_WAITS, 0)) FROM DBA_HIST_SYSTEM_EVENT B, DBA_HIST_SYSTEM_EVENT E WHERE B.SNAP_ID(+) = :B4 AND E.SNAP_ID = :B3 AND B.DBID(+) = :B2
AND E.DBID = :B2 AND B.INSTANCE_NUMBER(+) = :B1 AND E.INSTANCE_NUMBER = :B1 AND B.EVENT_ID(+) = E.EVENT_ID AND (E.EVENT_NAME = 'latch free' OR E.EVENT_NAME LIKE 'latch
:%')

SELECT DECODE(B.TOTAL_SQL, 0, 0, 100*(1-B.SINGLE_USE_SQL/B.TOTAL_SQL)), DECODE(E.TOTAL_SQL, 0, 0, 100*(1-E.SINGLE_USE_SQL/E.TOTAL_SQL)), DECODE(B.TOTAL_SQL_MEM, 0, 0, 1
00*(1-B.SINGLE_USE_SQL_MEM/B.TOTAL_SQL_MEM)), DECODE(E.TOTAL_SQL_MEM, 0, 0, 100*(1-E.SINGLE_USE_SQL_MEM/E.TOTAL_SQL_MEM)) FROM DBA_HIST_SQL_SUMMARY B, DBA_HIST_SQL_SUMM
ARY E WHERE B.SNAP_ID = :B4 AND E.SNAP_ID = :B3 AND B.INSTANCE_NUMBER = :B2 AND E.INSTANCE_NUMBER = :B2 AND B.DBID = :B1 AND E.DBID = :B1

SELECT EVENT, WAITS, TIME, DECODE(WAITS, NULL, TO_NUMBER(NULL), 0, TO_NUMBER(NULL), TIME/WAITS*1000) AVGWT, PCTWTT, WAIT_CLASS FROM (SELECT EVENT, WAITS, TIME, PCTWTT,
WAIT_CLASS FROM (SELECT E.EVENT_NAME EVENT, E.TOTAL_WAITS - NVL(B.TOTAL_WAITS,0) WAITS, (E.TIME_WAITED_MICRO - NVL(B.TIME_WAITED_MICRO,0)) / 1000000 TIME, 100 * (E.TIME
_WAITED_MICRO - NVL(B.TIME_WAITED_MICRO,0)) / :B1 PCTWTT, E.WAIT_CLASS WAIT_CLASS FROM DBA_HIST_SYSTEM_EVENT B, DBA_HIST_SYSTEM_EVENT E WHERE B.SNAP_ID(+) = :B5 AND E.S
NAP_ID = :B4 AND B.DBID(+) = :B3 AND E.DBID = :B3 AND B.INSTANCE_NUMBER(+) = :B2 AND E.INSTANCE_NUMBER = :B2 AND B.EVENT_ID(+) = E.EVENT_ID AND E.TOTAL_WAITS > NVL(B.TO
TAL_WAITS,0) AND E.WAIT_CLASS != 'Idle' UNION ALL SELECT 'CPU time' EVENT, TO_NUMBER(NULL) WAITS, :B6 /1000000 TIME, 100 * :B6 / :B1 PCTWTT, NULL WAIT_CLASS FROM DUAL W
HERE :B6 > 0) ORDER BY TIME DESC, WAITS DESC) WHERE ROWNUM <= :B7

SELECT SUM(E.TIME_WAITED_MICRO - NVL(B.TIME_WAITED_MICRO,0)) FROM DBA_HIST_SYSTEM_EVENT B, DBA_HIST_SYSTEM_EVENT E WHERE B.SNAP_ID(+) = :B4 AND E.SNAP_ID = :B3 AND B.DB
ID(+) = :B2 AND E.DBID = :B2 AND B.INSTANCE_NUMBER(+) = :B1 AND E.INSTANCE_NUMBER = :B1 AND B.EVENT_ID(+) = E.EVENT_ID AND E.WAIT_CLASS = 'User I/O'

SELECT (E.ESTD_LC_TIME_SAVED - B.ESTD_LC_TIME_SAVED) FROM DBA_HIST_SHARED_POOL_ADVICE B, DBA_HIST_SHARED_POOL_ADVICE E WHERE B.DBID = :B3 AND B.INSTANCE_NUMBER = :B2 AN
D B.SNAP_ID = :B4 AND E.DBID = :B3 AND E.INSTANCE_NUMBER = :B2 AND E.SNAP_ID = :B1 AND E.SHARED_POOL_SIZE_FACTOR = 1 AND B.SHARED_POOL_SIZE_FACTOR = 1

 

 

 1-3  Instance Efficiency Percentages (Target 100%)

 

 

 

Instance Efficiency Percentages (Target 100%)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
            Buffer Nowait %:   99.97       Redo NoWait %:  100.00
            Buffer  Hit   %:   97.43    In-memory Sort %:  100.00
            Library Hit   %:   99.88        Soft Parse %:   99.58
         Execute to Parse %:   94.82         Latch Hit %:   99.95
Parse CPU to Parse Elapsd %:    1.75     % Non-Parse CPU:   99.85

 

 

 

上述所有指標 的目標均為100%,即越大越好,在少數bug情況下可能超過100%或者為負值。

 

  • 80%以上  %Non-Parse CPU
  • 90%以上  Buffer Hit%, In-memory Sort%, Soft Parse%
  • 95%以上  Library Hit%, Redo Nowait%, Buffer Nowait%
  • 98%以上  Latch Hit%

 

1、 Buffer Nowait %  session申請一個buffer(相容模式)不等待的次數比例。 需要訪問buffer時立即可以訪問的比率,  不相容的情況 在9i中是 buffer busy waits,從10g以後 buffer busy waits 分離為 buffer busy wait 和 read by other session2個等待事件 :

 

 

9i 中 waitstat的總次數基本等於buffer busy waits等待事件的次數

SQL> select sum(TOTAL_WAITS) from v$system_event where event='buffer busy waits';
SUM(TOTAL_WAITS)
—————-
33070394

SQL> select sum(count) from v$waitstat;
SUM(COUNT)
———-
33069335

10g waitstat的總次數基本等於 buffer busy waits 和  read by other session 等待的次數總和

SQL> select sum(TOTAL_WAITS) from v$system_event where event='buffer busy waits' or event='read by other session';
SUM(TOTAL_WAITS)
—————-
60675815

SQL> select sum(count) from v$waitstat;

SUM(COUNT)
———-
60423739

 

 

 

Buffer Nowait %的計算公式是 sum(v$waitstat.wait_count) / (v$sysstat statistic session logical reads),例如在AWR中:

 

 

Class Waits Total Wait Time (s) Avg Time (ms)
data block 24,543 2,267 92
undo header 743 2 3
undo block 1,116 0 0
1st level bmb 35 0 0

 

session logical reads 40,769,800 22,544.84 204.71

 

Buffer Nowait %: 99.94

 

 

Buffer Nowait= (  40,769,800 – (24543+743+1116+35))/ ( 40,769,800) = 0.99935= 99.94%

 

SELECT SUM(WAIT_COUNT) FROM DBA_HIST_WAITSTAT WHERE SNAP_ID = :B3 AND DBID = :B2 AND INSTANCE_NUMBER = :B1

 

 

2、buffer HIT%: 經典的經典,快取記憶體命中率,反應物理讀和快取命中間的糾結,但這個指標即便99% 也不能說明物理讀等待少了

不合理的db_cache_size,或者是SGA自動管理ASMM /Memory 自動管理AMM下都可能因為db_cache_size過小引起大量的db file sequential /scattered read等待事件; maclean曾經遇到過因為大量硬解析導致ASMM 下shared pool共享池大幅度膨脹,而db cache相應縮小shrink的例子,最終db cache收縮到只有幾百兆,本來沒有的物理讀等待事件都大幅湧現出來 。

此外與 buffer HIT%相關的指標值得關注的還有 table scans(long tables) 大表掃描這個統計專案、此外相關的欄目還有Buffer Pool Statistics 、Buffer Pool Advisory等(如果不知道在哪裡,直接找一個AWR 去搜尋這些關鍵詞即可)。

 

 

buffer HIT%在 不同版本有多個計算公式:

在9i中

Buffer Hit Ratio = 1 – ((physical reads – physical reads direct – physical reads direct (lob)) / (db block gets + consistent gets – physical reads direct – physical reads direct (lob))

在10g以後:

Buffer Hit Ratio=  1 – ((‘physical reads cache’) / (‘consistent gets from cache’ + ‘db block gets from cache’)

注意:但是實際AWR中 似乎還是按照9i中的演算法,雖然演算法的區別對最後算得的比率影響不大。

對於buffer hit % 看它的命中率有多高沒有意義,主要是關注 未命中的次數有多少。通過上述公式很容易反推出未命中的物理讀的次數。

db block gets 、consistent gets 以及 session logical reads的關係如下:

db block gets=db block gets direct+ db block gets from cache

consistent gets = consistent gets from cache+ consistent gets direct

consistent gets from cache= consistent gets – examination  + else

consistent gets – examination==>指的是不需要pin buffer直接可以執行consistent get的次數,常用於索引,只需要一次latch get

 

session logical reads = db block gets +consistent gets

 

其中physical reads 、physical reads cache、physical reads direct、physical reads direct (lob)幾者的關係為:

physical reads = physical reads cache + physical reads direct

這個公式其實說明了 物理讀有2種 :

  • 物理讀進入buffer cache中 ,是常見的模式 physical reads cache
  • 物理讀直接進入PGA 直接路徑讀, 即physical reads direct

 

physical reads 8 Total number of data blocks read from disk. This value can be greater than the value of “physical reads direct” plus “physical reads cache” as reads into process private buffers also included in this statistic.
physical reads cache 8 Total number of data blocks read from disk into the buffer cache. This is a subset of “physical reads” statistic.
physical reads direct 8 Number of reads directly from disk, bypassing the buffer cache. For example, in high bandwidth, data-intensive operations such as parallel query, reads of disk blocks bypass the buffer cache to maximize transfer rates and to prevent the premature aging of shared data blocks resident in the buffer cache.

 

 

physical reads direct = physical reads direct (lob) + physical reads direct temporary tablespace +  physical reads direct(普通)

這個公式也說明了 直接路徑讀 分成三個部分:

  • physical reads direct (lob) 直接路徑讀LOB物件
  • physical reads direct temporary tablespace  直接路徑讀臨時表空間
  • physical read direct(普通)   普通的直接路徑讀, 一般是11g開始的自動的大表direct path read和並行引起的direct path read

 

physical writes direct= physical writes direct (lob)+ physical writes direct temporary tablespace

DBWR checkpoint buffers written = DBWR thread checkpoint buffers written+ DBWR tablespace checkpoint buffers written+ DBWR PQ tablespace checkpoint buffers written+….

 

3、Redo nowait%: session在生成redo entry時不用等待的比例,redo相關的資源爭用例如redo space request爭用可能造成生成redo時需求等待。此項資料來源於v$sysstat中的(redo log space requests/redo entries)。 一般來說10g以後不太用關注log_buffer引數的大小,需要關注是否有十分頻繁的 log switch ; 過小的redo logfile size 如果配合較大的SGA和頻繁的commit提交都可能造成該問題。 考慮增到redo logfile 的尺寸 : 1~4G 每個,7~10組都是合適的。同時考慮優化redo logfile和datafile 的I/O。

 

 

4、In-memory Sort%:這個指標因為它不計算workarea中所有的操作型別,所以現在越來越雞肋了。 純粹在記憶體中完成的排序比例。資料來源於v$sysstat statistics sorts (disk) 和 sorts (memory),  In-memory Sort% =  sort(memory) / ( sort(disk)+ sort(memory) )

 

5、

Library Hit%:  library cache命中率,申請一個library cache object例如一個SQL cursor時,其已經在library cache中的比例。 資料來源  V$librarycache的pins和pinhits。 合理值:>95%       ,該比例來源於1- ( Σ(pin Requests * Pct Miss) / Sum(Pin Requests) )

 

 

維護這個指標的重點是 保持shared pool共享池有足夠的Free Memory,且沒有過多的記憶體碎片,具體可以參考這裡。  顯然過小的shared pool可用空間會導致library cache object被aged out換出共享池。

 

此外保證SQL語句繫結變數和遊標可以共享也是很重要的因素。

 

 

Library Cache Activity                DB/Inst: G10R25/G10R25  Snaps: 2964-2965
-> "Pct Misses"  should be very low  http://www.askmaclean.com

                         Get    Pct            Pin    Pct             Invali-
Namespace           Requests   Miss       Requests   Miss    Reloads  dations
--------------- ------------ ------ -------------- ------ ---------- --------
BODY                       5    0.0              6   16.7          1        0
CLUSTER                   10    0.0             26    0.0          0        0
SQL AREA             601,357   99.8        902,828   99.7         47        2
TABLE/PROCEDURE           83    9.6        601,443    0.0         48        0

 

GETS NUMBER Number of times a lock was requested for objects of this namespace
GETHITS NUMBER Number of times an object’s handle was found in memory
GETHITRATIO NUMBER Ratio of GETHITS to GETS
PINS NUMBER Number of times a PIN was requested for objects of this namespace
PINHITS NUMBER Number of times all of the metadata pieces of the library object were found in memory
PINHITRATIO NUMBER Ratio of PINHITS to PINS
RELOADS NUMBER Any PIN of an object that is not the first PIN performed since the object handle was created, and which requires loading the object from disk
INVALIDATIONS NUMBER Total number of times objects in this namespace were marked invalid because a dependent object was modified

 

SELECT SUM(PINS), SUM(PINHITS) FROM DBA_HIST_LIBRARYCACHE WHERE SNAP_ID = :B3 AND DBID = :B2 AND INSTANCE_NUMBER = :B1

 

6、

Soft Parse: 軟解析比例,無需多說的經典指標,資料來源v$sysstat statistics的parse count(total)和parse count(hard)。 合理值>95%

Soft Parse %是AWR中另一個重要的解析指標,該指標反應了快照時間內 軟解析次數 和 總解析次數 (soft+hard 軟解析次數+硬解析次數)的比值,若該指標很低,那麼說明了可能存在劇烈的hard parse硬解析,大量的硬解析會消耗更多的CPU時間片併產生解析爭用(此時可以考慮使用cursor_sharing=FORCE); 理論上我們總是希望 Soft Parse % 接近於100%, 但並不是說100%的軟解析就是最理想的解析狀態,通過設定 session_cached_cursors引數和反覆重用遊標我們可以讓解析來的更輕量級,即通俗所說的利用會話快取遊標實現的軟軟解析(soft soft parse)。

 

7、

Execute  to Parse% 指標反映了執行解析比 其公式為 1-(parse/execute) , 目標為100% 及接近於只 執行而不解析。 資料來源v$sysstat statistics parse count (total) 和execute count

在oracle中解析往往是執行的先提工作,但是通過遊標共享 可以解析一次 執行多次, 執行解析可能分成多種場景:

  1. hard coding => 硬編碼程式碼 硬解析一次 ,執行一次, 則理論上其執行解析比 為 1:1 ,則理論上Execute to Parse =0 極差,且soft parse比例也為0%
  2. 繫結變數但是仍軟解析=》 軟解析一次,執行一次 , 這種情況雖然比前一種好 但是執行解析比(這裡的parse,包含了軟解析和硬解析)仍是1:1, 理論上Execute to Parse =0 極差, 但是soft parse比例可能很高
  3. 使用 靜態SQL、動態繫結、session_cached_cursor、open cursors等技術實現的 解析一次,執行多次, 執行解析比為N:1, 則 Execute to Parse= 1- (1/N) 執行次數越多 Execute to Parse越接近100% ,這種是我們在OLTP環境中喜聞樂見的!

通俗地說 soft parse% 反映了軟解析率, 而軟解析在oracle中仍是較昂貴的操作, 我們希望的是解析1次執行N次,如果每次執行均需要軟解析,那麼雖然soft parse%=100% 但是parse time仍可能是消耗DB TIME的大頭。

Execute to Parse反映了 執行解析比,Execute to Parse和soft parse% 都很低 那麼說明確實沒有繫結變數 , 而如果 soft parse% 接近99% 而Execute to Parse 不足90% 則說明沒有執行解析比低, 需要通過 靜態SQL、動態繫結、session_cached_cursor、open cursors等技術減少軟解析。

 

8、

Latch Hit%: willing-to-wait latch閂申請不要等待的比例。 資料來源V$latch gets和misses

 

 

Latch Name
----------------------------------------
  Get Requests      Misses      Sleeps  Spin Gets   Sleep1   Sleep2   Sleep3
-------------- ----------- ----------- ---------- -------- -------- --------
shared pool
     9,988,637         364          23        341        0        0        0
library cache
     6,753,468         152           6        146        0        0        0
Memory Management Latch
           369           1           1          0        0        0        0
qmn task queue latch
            24           1           1          0        0        0        0

 

 

Latch Hit%:=  (1 – (Sum(misses) / Sum(gets)))

關於Latch的更多資訊內容可以參考 AWR後面的專欄Latch Statistics, 注意對於一個併發設計良好的OLTP應用來說,Latch、Enqueue等併發控制不應當成為系統的主要瓶頸, 同時對於這些併發爭用而言 堆積硬體CPU和記憶體 很難有效改善效能。

SELECT SUM(GETS), SUM(MISSES) FROM DBA_HIST_LATCH WHERE SNAP_ID = :B3 AND DBID = :B2 AND INSTANCE_NUMBER = :B1

9、

Parse CPU To Parse Elapsd:該指標反映了 快照內解析CPU時間和總的解析時間的比值(Parse CPU Time/ Parse Elapsed Time); 若該指標水平很低,那麼說明在整個解析過程中 實際在CPU上運算的時間是很短的,而主要的解析時間都耗費在各種其他非空閒的等待事件上了(如latch:shared pool,row cache lock之類等)   資料來源 V$sysstat 的 parse time cpu和parse time elapsed

 

10、

%Non-Parse CPU 非解析cpu比例,公式為  (DB CPU – Parse CPU)/DB CPU,  若大多數CPU都用在解析上了,則可能好鋼沒用在刃上了。 資料來源 v$sysstat 的 parse time cpu和 cpu used by this session

 

 

 

 1-4    Shared Pool Statistics

 

 

 Shared Pool Statistics        Begin    End
                              ------  ------
             Memory Usage %:   84.64   79.67
    % SQL with executions>1:   93.77   24.69
  % Memory for SQL w/exec>1:   85.36   34.8

 

 

該環節提供一個大致的SQL重用及shared pool記憶體使用的評估。 應用是否共享SQL? 有多少記憶體是給只執行一次的SQL佔掉的,對比共享SQL呢?

如果該環節中% SQL with executions>1的 比例 小於%90 , 考慮用下面連結的SQL去抓 硬編碼的非繫結變數SQL語句。

利用FORCE_MATCHING_SIGNATURE捕獲非繫結變數SQL

Memory Usage %:    (shared pool 的實時大小- shared pool free memory)/ shared pool 的實時大小, 代表shared pool的空間使用率,雖然有使用率但沒有標明碎片程度

% SQL with executions>1      複用的SQL佔總的SQL語句的比率,資料來源 DBA_HIST_SQL_SUMMARY 的 SINGLE_USE_SQL和TOTAL_SQL:1 – SINGLE_USE_SQL / TOTAL_SQL

% Memory for SQL w/exec>1   執行2次以上的SQL所佔記憶體佔總的SQL記憶體的比率,資料來源DBA_HIST_SQL_SUMMARY 的SINGLE_USE_SQL_MEM和TOTAL_SQL_MEM:1 – SINGLE_USE_SQL_MEM / TOTAL_SQL_MEM

==》上面2個指標也可以用來大致瞭解shared pool中的記憶體碎片程式,因為SINGLE_USE_SQL 單次執行的SQL多的話,那麼顯然可能有較多的共享池記憶體碎片

SQL複用率低的原因一般來說就是硬繫結變數(hard Coding)未合理使用繫結變數(bind variable),對於這種現象短期無法修改代表使用繫結變數的可以ALTER SYSTEM SET CURSOR_SHARING=FORCE; 來繞過問題,對於長期來看還是要修改程式碼繫結變數。   Oracle 從11g開始宣稱今後將廢棄CURSOR_SHARING的SIMILAR選項,同時SIMILAR選項本身也造成了很多問題,所以一律不推薦用CURSOR_SHARING=SIMILAR。

如果memory usage%比率一直很高,則可以關注下後面sga breakdown中的shared pool free memory大小,一般推薦至少讓free memroy有個300~500MB 以避免隱患。

 

 

1-5 Top 5 Timed Events

 

 

Top 5 Timed Events                                         Avg %Total
~~~~~~~~~~~~~~~~~~                                        wait   Call
Event                                 Waits    Time (s)   (ms)   Time Wait Class
------------------------------ ------------ ----------- ------ ------ ----------
gc buffer busy                       79,083      73,024    923   65.4    Cluster
enq: TX - row lock contention        35,068      17,123    488   15.3 Applicatio
CPU time                                         12,205          10.9           
gc current request                    2,714       3,315   1221    3.0    Cluster
gc cr multi block request            83,666       1,008     12    0.9    Cluster

 

 

基於Wait Interface的調優是目前的主流!每個指標都重要!

基於命中比例的調優,好比是統計局的報告, 張財主家財產100萬,李木匠家財產1萬, 平均財產50.5萬。

基於等待事件的調優,好比馬路上100輛汽車的行駛記錄表,上車用了幾分鐘, 紅燈等了幾分鐘,擁堵塞了幾分鐘。。。

豐富的等待事件以足夠的細節來描繪系統執行的效能瓶頸,這是Mysql夢寐以求的東西……

 

Waits : 該等待事件發生的次數, 對於DB CPU此項不可用

Times : 該等待事件消耗的總計時間,單位為秒, 對於DB CPU 而言是前臺程式所消耗CPU時間片的總和,但不包括Wait on CPU QUEUE

Avg Wait(ms)  :  該等待事件平均等待的時間, 實際就是  Times/Waits,單位ms, 對於DB CPU此項不可用

% Total Call Time, 該等待事件佔總的call time的比率

total call time  =  total CPU time + total wait time for non-idle events

% Total Call Time  =  time for each timed event / total call time

Wait Class: 等待型別:

Concurrency,System I/O,User I/O,Administrative,Other,Configuration,Scheduler,Cluster,Application,Idle,Network,Commit

 

 

 

CPU 上在幹什麼?

邏輯讀? 解析?Latch spin? PL/SQL、函式運算?

DB CPU/CPU time是Top 1 是好事情嗎?  未必!

注意DB CPU不包含 wait on cpu queue!

 

 

  SELECT e.event_name event,
         e.total_waits - NVL (b.total_waits, 0) waits,
         DECODE (
            e.total_waits - NVL (b.total_waits, 0),
            0, TO_NUMBER (NULL),
            DECODE (
               e.total_timeouts - NVL (b.total_timeouts, 0),
               0, TO_NUMBER (NULL),
                 100
               * (e.total_timeouts - NVL (b.total_timeouts, 0))
               / (e.total_waits - NVL (b.total_waits, 0))))
            pctto,
         (e.time_waited_micro - NVL (b.time_waited_micro, 0)) / 1000000 time,
         DECODE (
            (e.total_waits - NVL (b.total_waits, 0)),
            0, TO_NUMBER (NULL),
            ( (e.time_waited_micro - NVL (b.time_waited_micro, 0)) / 1000)
            / (e.total_waits - NVL (b.total_waits, 0)))
            avgwt,
         DECODE (e.wait_class, 'Idle', 99, 0) idle
    FROM dba_hist_system_event b, dba_hist_system_event e
   WHERE     b.snap_id(+) = &bid
         AND e.snap_id = &eid
         --AND b.dbid(+) = :dbid
         --AND e.dbid = :dbid
         AND b.instance_number(+) = 1
         AND e.instance_number = 1
         AND b.event_id(+) = e.event_id
         AND e.total_waits > NVL (b.total_waits, 0)
         AND e.event_name NOT IN
                ('smon timer',
                 'pmon timer',
                 'dispatcher timer',
                 'dispatcher listen timer',
                 'rdbms ipc message')
ORDER BY idle,
         time DESC,
         waits DESC,
         event

 

 

 

幾種常見的等待事件

=========================>

 

db file scattered read,  Avg wait time應當小於20ms  如果資料庫執行全表掃描或者是全索引掃描會執行 Multi block I/O ,此時等待物理I/O 結束會出現此等待事件。一般會從應用程式(SQL),I/O 方面入手調整; 注意和《Instance Activity Stats》中的index fast full scans (full) 以及 table scans (long tables)集合起來一起看。

 

db file sequential read ,該等待事件Avg wait time平均單次等待時間應當小於20ms

”db file sequential read”單塊讀等待是一種最為常見的物理IO等待事件,這裡的sequential指的是將資料塊讀入到相連的記憶體空間中(contiguous memory space),而不是指所讀取的資料塊是連續的。該wait event可能在以下情景中發生:

http://www.askmaclean.com/archives/db-file-sequential-read-wait-event.html

 

latch free  其實是未獲得latch ,而進入latch sleep,見《全面解析9i以後Oracle Latch閂鎖原理》

 

 

enq:XX           佇列鎖等待,視乎不同的佇列鎖有不同的情況:

 

 

 

 

free buffer waits:是由於無法找到可用的buffer cache 空閒區域,需要等待DBWR 寫入完成引起

 

 

  • 一般是由於
  • 低效的sql
  • 過小的buffer cache
  • DBWR 工作負荷過量

 

 

buffer busy wait/ read by other session  一般以上2個等待事件可以歸為一起處理,建議客戶都進行監控 。 以上等待時間可以由如下操作引起

  • select/select —- read by other session: 由於需要從 資料檔案中將資料塊讀入 buffer cache 中引起,有可能是 大量的 邏輯/物理讀  ;或者過小的 buffer cache 引起
  • select/update —- buffer busy waits/ read by other session  是由於更新某資料塊後 需要在undo 中 重建構建 過去時間的塊,有可能伴生 enq:cr-contention 是由於大量的物理讀/邏輯讀造成。
  • update/update —- buffer busy waits 由於更新同一個資料塊(非同一行,同一行是enq:TX-contention) 此類問題是熱點塊造成
  • insert/insert —- buffer busy waits  是由於freelist 爭用造成,可以將表空間更改為ASSM 管理 或者加大freelist 。

 

 

write complete waits :一般此類等待事件是由於 DBWR 將髒資料寫入 資料檔案,其他程式如果需要修改 buffer cache會引起此等待事件,一般是 I/O 效能問題或者是DBWR 工作負荷過量引起

Wait time  1 Seconds.

 

 

control file parallel write:頻繁的更新控制檔案會造成大量此類等待事件,如日誌頻繁切換,檢查點經常發生,nologging 引起頻繁的資料檔案更改,I/O 系統效能緩慢。

 

 

log file sync:一般此類等待時間是由於 LGWR 程式講redo log buffer 寫入redo log 中發生。如果此類事件頻繁發生,可以判斷為:

  • commit 次數是否過多
  • I/O 系統問題
  • 重做日誌是否不必要被建立
  • redo log buffer 是否過大

 

 

 

 2-1 Time Model Statistics

 

 

Time Model Statistics             DB/Inst: ITSCMP/itscmp2  Snaps: 70719-70723
-> Total time in database user-calls (DB Time): 883542.2s
-> Statistics including the word "background" measure background process
   time, and so do not contribute to the DB time statistic
-> Ordered by % or DB time desc, Statistic name

Statistic Name                                       Time (s) % of DB Time
------------------------------------------ ------------------ ------------
sql execute elapsed time                            805,159.7         91.1
sequence load elapsed time                           41,159.2          4.7
DB CPU                                               20,649.1          2.3
parse time elapsed                                    1,112.8           .1
hard parse elapsed time                                 995.2           .1
hard parse (sharing criteria) elapsed time              237.3           .0
hard parse (bind mismatch) elapsed time                 227.6           .0
connection management call elapsed time                  29.7           .0
PL/SQL execution elapsed time                             9.2           .0
PL/SQL compilation elapsed time                           6.6           .0
failed parse elapsed time                                 2.0           .0
repeated bind elapsed time                                0.4           .0
DB time                                             883,542.2
background elapsed time                              25,439.0
background cpu time                                   1,980.9
          -------------------------------------------------------------

 

Time Model Statistics幾個特別有用的時間指標:

 

  • parse time elapsed、hard parse elapsed time 結合起來看解析是否是主要矛盾,若是則重點是軟解析還是硬解析
  • sequence load elapsed time sequence序列爭用是否是問題焦點
  • PL/SQL compilation elapsed time PL/SQL物件編譯的耗時
  • 注意PL/SQL execution elapsed time  純耗費在PL/SQL直譯器上的時間。不包括花在執行和解析其包含SQL上的時間
  • connection management call elapsed time 建立資料庫session連線和斷開的耗時
  • failed parse elapsed time 解析失敗,例如由於ORA-4031
  • hard parse (sharing criteria) elapsed time  由於無法共享遊標造成的硬解析
  • hard parse (bind mismatch) elapsed time  由於bind type or bind size 不一致造成的硬解析

 

注意該時間模型中的指標存在包含關係所以Time Model Statistics加起來超過100%再正常不過

 

 

1) background elapsed time
    2) background cpu time
          3) RMAN cpu time (backup/restore)
1) DB time
    2) DB CPU
    2) connection management call elapsed time
    2) sequence load elapsed time
    2) sql execute elapsed time
    2) parse time elapsed
          3) hard parse elapsed time
                4) hard parse (sharing criteria) elapsed time
                    5) hard parse (bind mismatch) elapsed time
          3) failed parse elapsed time
                4) failed parse (out of shared memory) elapsed time
    2) PL/SQL execution elapsed time
    2) inbound PL/SQL rpc elapsed time
    2) PL/SQL compilation elapsed time
    2) Java execution elapsed time
    2) repeated bind elapsed time

 

 

 

2-2 Foreground Wait Class

 

 

 

Foreground Wait Class             
-> s  - second, ms - millisecond -    1000th of a second
-> ordered by wait time desc, waits desc
-> %Timeouts: value of 0 indicates value was < .5%.  Value of null is truly 0 
-> Captured Time accounts for        102.7%  of Total DB time     883,542.21 (s)
-> Total FG Wait Time:           886,957.73 (s)  DB CPU time:      20,649.06 (s)

                                                                  Avg
                                      %Time       Total Wait     wait
Wait Class                      Waits -outs         Time (s)     (ms)  %DB time
-------------------- ---------------- ----- ---------------- -------- ---------
Cluster                     9,825,884     1          525,134       53      59.4
Concurrency                   688,375     0          113,782      165      12.9
User I/O                   34,405,042     0           76,695        2       8.7
Commit                        172,193     0           62,776      365       7.1
Application                    11,422     0           57,760     5057       6.5
Configuration                  19,418     1           48,889     2518       5.5
DB CPU                                                20,649                2.3
Other                       1,757,896    94              924        1       0.1
System I/O                     30,165     0              598       20       0.1
Network                   171,955,673     0              400        0       0.0
Administrative                      2   100                0      101       0.0
          -------------------------------------------------------------

select distinct wait_class from v$event_name;

WAIT_CLASS
----------------------------------------------------------------
Concurrency
User I/O
System I/O
Administrative
Other
Configuration
Scheduler
Cluster
Application
Queueing
Idle
Network
Commit

 

 

  • Wait Class: 等待事件的型別,如上查詢所示,被分作12個型別。  10.2.0.5有916個等待事件,其中Other型別佔622個。
  • Waits:  該型別所屬等待事件在快照時間內的等待次數
  • %Time Out  等待超時的比率, 未 超時次數/waits  * 100 (%)
  • Total Wait Time: 該型別所屬等待事件總的耗時,單位為秒
  • Avg Wait(ms) : 該型別所屬等待事件的平均單次等待時間,單位為ms ,實際這個指標對commit 和 user i/o 以及system i/o型別有點意義,其他等待型別由於等待事件差異較大所以看平均值的意義較小
  • waits / txn:   該型別所屬等待事件的等待次數和事務比

 

Other 型別,遇到該型別等待事件 的話 常見的原因是Oracle Bug或者 網路、I/O存在問題, 一般推薦聯絡Maclean。

Concurrency 型別   並行爭用型別的等待事件,  典型的如 latch: shared pool、latch: library cache、row cache lock、library cache pin/lock

Cluster 型別  為Real Application Cluster RAC環境中的等待事件, 需要注意的是 如果啟用了RAC option,那麼即使你的叢集中只啟動了一個例項,那麼該例項也可能遇到 Cluster型別的等待事件, 例如gc buffer busy

System I/O  主要是後臺程式維護資料庫所產生的I/O,例如control file parallel write 、log file parallel write、db file parallel write。

User I/O    主要是前臺程式做了一些I/O操作,並不是說後臺程式不會有這些等待事件。 典型的如db file sequential/scattered  read、direct path read

Configuration  由於配置引起的等待事件,  例如 日誌切換的log file switch completion (日誌檔案 大小/數目 不夠),sequence的enq: SQ – contention (Sequence 使用nocache) ; Oracle認為它們是由於配置不當引起的,但實際未必真是這樣的配置引起的。

Application  應用造成的等待事件, 例如enq: TM – contention和enq: TX – row lock contention; Oracle認為這是由於應用設計不當造成的等待事件, 但實際這些Application class 等待可能受到 Concurrency、Cluster、System I/O 、User I/O等多種型別等待的影響,例如本來commit只要1ms ,則某一行資料僅被鎖定1ms, 但由於commit變慢 從而釋放行鎖變慢,引發大量的enq: TX – row lock contention等待事件。

 

Commit  僅log file sync ,log file sync的影響十分廣泛,值得我們深入討論。

 

Network :  網路型別的等待事件 例如 SQL*Net more data to client  、SQL*Net more data to dblink

Idle 空閒等待事件 ,最為常見的是rdbms ipc message (等待例項內部的ipc通訊才幹活,即別人告知我有活幹,我才幹,否則我休息==》Idle), SQL*Net message from client(等待SQL*NET傳來資訊,否則目前沒事幹)

 

 

 2-3 前臺等待事件

 

 

Foreground Wait Events          Snaps: 70719-70723
-> s  - second, ms - millisecond -    1000th of a second
-> Only events with Total Wait Time (s) >= .001 are shown
-> ordered by wait time desc, waits desc (idle events last)
-> %Timeouts: value of 0 indicates value was < .5%.  Value of null is truly 0

                                                             Avg
                                        %Time Total Wait    wait    Waits   % DB
Event                             Waits -outs   Time (s)    (ms)     /txn   time
-------------------------- ------------ ----- ---------- ------- -------- ------
gc buffer busy acquire        3,274,352     3    303,088      93     13.3   34.3
gc buffer busy release          387,673     2    128,114     330      1.6   14.5
enq: TX - index contention      193,918     0     97,375     502      0.8   11.0
cell single block physical   30,738,730     0     63,606       2    124.8    7.2
log file sync                   172,193     0     62,776     365      0.7    7.1
gc current block busy           146,154     0     53,027     363      0.6    6.0
enq: TM - contention              1,060     0     47,228   44555      0.0    5.3
enq: SQ - contention             17,431     0     35,683    2047      0.1    4.0
gc cr block busy                105,204     0     33,746     321      0.4    3.8
buffer busy waits               279,721     0     12,646      45      1.1    1.4
enq: HW - contention              1,201     3     12,192   10151      0.0    1.4
enq: TX - row lock content        9,231     0     10,482    1135      0.0    1.2
cell multiblock physical r      247,903     0      6,547      26      1.0     .7

 

Foreground Wait Events 前臺等待事件,資料主要來源於DBA_HIST_SYSTEM_EVENT

Event 等待事件名字

Waits  該等待事件在快照時間內等待的次數

%Timeouts :  每一個等待事件有其超時的設定,例如buffer busy waits 一般為3秒, Write Complete Waits的 timeout為1秒,如果等待事件 單次等待達到timeout的時間,則會進入下一次該等待事件

Total Wait Time  該等待事件 總的消耗的時間 ,單位為秒

Avg wait(ms): 該等待事件的單次平均等待時間,單位為毫秒

Waits/Txn: 該等待事件的等待次數和事務比

 

 

 

 2-4 後臺等待事件

 

 

Background Wait Events              Snaps: 70719-70723
-> ordered by wait time desc, waits desc (idle events last)
-> Only events with Total Wait Time (s) >= .001 are shown
-> %Timeouts: value of 0 indicates value was < .5%.  Value of null is truly 0

                                                             Avg
                                        %Time Total Wait    wait    Waits   % bg
Event                             Waits -outs   Time (s)    (ms)     /txn   time
-------------------------- ------------ ----- ---------- ------- -------- ------
db file parallel write           90,979     0      7,831      86      0.4   30.8
gcs log flush sync            4,756,076     6      4,714       1     19.3   18.5
enq: CF - contention              2,123    40      4,038    1902      0.0   15.9
control file sequential re       90,227     0      2,380      26      0.4    9.4
log file parallel write         108,383     0      1,723      16      0.4    6.8
control file parallel writ        4,812     0        988     205      0.0    3.9
Disk file operations I/O         26,216     0        731      28      0.1    2.9
flashback log file write          9,870     0        720      73      0.0    2.8
LNS wait on SENDREQ             202,747     0        600       3      0.8    2.4
ASM file metadata operatio       15,801     0        344      22      0.1    1.4
cell single block physical       39,283     0        341       9      0.2    1.3
LGWR-LNS wait on channel        183,443    18        203       1      0.7     .8
gc current block busy               122     0        132    1082      0.0     .5
gc buffer busy release               60    12        127    2113      0.0     .5
Parameter File I/O                  592     0        116     195      0.0     .5
log file sequential read          1,804     0        104      58      0.0     .4

 

 

Background Wait Events 後臺等待事件, 資料主要來源於DBA_HIST_BG_EVENT_SUMMARY

 

Event 等待事件名字

Waits  該等待事件在快照時間內等待的次數

%Timeouts :  每一個等待事件有其超時的設定,例如buffer busy waits 一般為3秒, Write Complete Waits的 timeout為1秒,如果等待事件 單次等待達到timeout的時間,則會進入下一次該等待事件

Total Wait Time  該等待事件 總的消耗的時間 ,單位為秒

Avg wait(ms): 該等待事件的單次平均等待時間,單位為毫秒

Waits/Txn: 該等待事件的等待次數和事務比

 

 

 2-5           Operating System Statistics

 

 

Operating System Statistics         Snaps: 70719-70723
TIME statistic values are diffed.
   All others display actual values.  End Value is displayed if different
-> ordered by statistic type (CPU Use, Virtual Memory, Hardware Config), Name

Statistic                                  Value        End Value
------------------------- ---------------------- ----------------
BUSY_TIME                              2,894,855
IDLE_TIME                              5,568,240
IOWAIT_TIME                               18,973
SYS_TIME                                 602,532
USER_TIME                              2,090,082
LOAD                                           8               13
VM_IN_BYTES                                    0
VM_OUT_BYTES                                   0
PHYSICAL_MEMORY_BYTES            101,221,343,232
NUM_CPUS                                      24
NUM_CPU_CORES                                 12
NUM_CPU_SOCKETS                                2
GLOBAL_RECEIVE_SIZE_MAX                4,194,304
GLOBAL_SEND_SIZE_MAX                   2,097,152
TCP_RECEIVE_SIZE_DEFAULT                  87,380
TCP_RECEIVE_SIZE_MAX                   4,194,304
TCP_RECEIVE_SIZE_MIN                       4,096
TCP_SEND_SIZE_DEFAULT                     16,384
TCP_SEND_SIZE_MAX                      4,194,304
TCP_SEND_SIZE_MIN                          4,096
          -------------------------------------------------------------

 

Operating System Statistics   作業系統統計資訊

 

資料來源於V$OSSTAT  / DBA_HIST_OSSTAT,,  TIME相關的指標單位均為百分之一秒

 

統計項 描述
NUM_CPU_SOCKETS 物理CPU的數目
NUM_CPU_CORES CPU的核數
NUM_CPUS 邏輯CPU的數目
SYS_TIME 在核心態被消耗掉的CPU時間片,單位為百分之一秒
USER_TIME 在使用者態被消耗掉的CPU時間片,單位為百分之一秒
BUSY_TIME Busy_Time=SYS_TIME+USER_TIME 消耗的CPU時間片,單位為百分之一秒
AVG_BUSY_TIME AVG_BUSY_TIME= BUSY_TIME/NUM_CPUS
IDLE_TIME 空閒的CPU時間片,單位為百分之一秒
所有CPU所能提供總的時間片 BUSY_TIME + IDLE_TIME = ELAPSED_TIME * CPU_COUNT
OS_CPU_WAIT_TIME 程式等OS排程的時間,cpu queuing
VM_IN_BYTES 換入頁的位元組數
VM_OUT_BYTES 換出頁的位元組數,部分版本下並不準確,例如Bug 11712010 Abstract: VIRTUAL MEMORY PAGING ON 11.2.0.2 DATABASES,僅供參考
IOWAIT_TIME 所有CPU花費在等待I/O完成上的時間  單位為百分之一秒
RSRC_MGR_CPU_WAIT_TIME 是指當resource manager控制CPU排程時,需要控制對應程式暫時不使用CPU而程式到內部執行佇列中,以保證該程式對應的consumer group(消費組)沒有消耗比指定resource manager指令更多的CPU。RSRC_MGR_CPU_WAIT_TIME指等在內部執行佇列上的時間,在等待時不消耗CPU

 

 

2-6 Service Statistcs

 

 

Service Statistics                 Snaps: 70719-70723
-> ordered by DB Time

                                                           Physical      Logical
Service Name                  DB Time (s)   DB CPU (s)    Reads (K)    Reads (K)
---------------------------- ------------ ------------ ------------ ------------
itms-contentmasterdb-prod         897,099       20,618       35,668    1,958,580
SYS$USERS                           4,312          189        5,957       13,333
itmscmp                             1,941          121       14,949       18,187
itscmp                                331           20          114          218
itscmp_dgmgrl                         121            1            0            0
SYS$BACKGROUND                          0            0          142       30,022
ITSCMP1_PR                              0            0            0            0
its-reference-prod                      0            0            0            0
itscmpXDB                               0            0            0            0

 

 

按照Service Name來分組時間模型和 物理、邏輯讀取, 部分資料來源於 WRH$_SERVICE_NAME;

Service Name  對應的服務名  (v$services), SYS$BACKGROUND代表後臺程式, SYS$USERS一般是系統使用者登入

DB TIME (s):  本服務名所消耗的DB TIME時間,單位為秒

DB CPU(s):  本服務名所消耗的DB CPU 時間,單位為秒

Physical Reads : 本服務名所消耗的物理讀

Logical Reads : 本服務所消耗的邏輯讀

 

 

 

2-7  Service Wait Class Stats

 

 

Service Wait Class Stats            Snaps: 70719-70723
-> Wait Class info for services in the Service Statistics section.
-> Total Waits and Time Waited displayed for the following wait
   classes:  User I/O, Concurrency, Administrative, Network
-> Time Waited (Wt Time) in seconds

Service Name
----------------------------------------------------------------
 User I/O  User I/O  Concurcy  Concurcy     Admin     Admin   Network   Network
Total Wts   Wt Time Total Wts   Wt Time Total Wts   Wt Time Total Wts   Wt Time
--------- --------- --------- --------- --------- --------- --------- ---------
itms-contentmasterdb-prod
 33321670     71443    678373    113759         0         0 1.718E+08       127
SYS$USERS
   173233      3656      6738        30         2         0     72674         3
itmscmp
   676773      1319      1831         0         0         0      2216         0
itscmp
   219577       236      1093         0         0         0     18112         0
itscmp_dgmgrl
       34         0         8         0         0         0         9         0
SYS$BACKGROUND
    71940      1300    320677        56         0         0    442252       872
          -------------------------------------------------------------

 

 

  • User I/O Total Wts : 對應該服務名下 使用者I/O類等待的總的次數
  • User I/O Wt Time : 對應該服務名下 使用者I/O累等待的總時間,單位為 1/100秒
  • Concurcy Total Wts: 對應該服務名下 Concurrency 型別等待的總次數
  • Concurcy Wt Time :對應該服務名下 Concurrency 型別等待的總時間, 單位為 1/100秒
  • Admin Total Wts: 對應該服務名下Admin 類等待的總次數
  • Admin Wt Time: 對應該服務名下Admin類等待的總時間,單位為 1/100秒
  • Network Total Wts : 對應服務名下Network類等待的總次數
  • Network Wt Time: 對應服務名下Network類等待的總事件, 單位為 1/100秒

 

2-8 Host CPU 

 

Host CPU (CPUs:   24 Cores:   12 Sockets:    2)
~~~~~~~~         Load Average
               Begin       End     %User   %System      %WIO     %Idle
           --------- --------- --------- --------- --------- ---------
                8.41     12.84      24.7       7.1       0.2      65.8

 

“Load Average”  begin/end值代表每個CPU的大致執行佇列大小。上例中快照開始到結束,平均 CPU負載增加了;與《2-5 Operating System Statistics》中的LOAD相呼應。

 

%User+%System=> 總的CPU使用率,在這裡是31.8%

 

Elapsed Time * NUM_CPUS * CPU utilization= 60.23 (mins)  * 24 * 31.8% = 459.67536 mins=Busy Time

 

 

2-8 Instance CPU 

 

Instance CPU
~~~~~~~~~~~~
              % of total CPU for Instance:      26.7
              % of busy  CPU for Instance:      78.2
  %DB time waiting for CPU - Resource Mgr:       0.0

%Total CPU,該例項所使用的CPU佔總CPU的比例  % of total CPU for Instance

%Busy CPU,該例項所使用的Cpu佔總的被使用CPU的比例  % of busy CPU for Instance

例如共4個邏輯CPU,其中3個被完全使用,3箇中的1個完全被該例項使用,則%Total CPU= ? =25%,而%Busy CPU= 1/3= 33%

當CPU高時一般看%Busy CPU可以確定CPU到底是否是本例項消耗的,還是主機上其他程式

% of busy CPU for Instance= (DB CPU+ background cpu time) / (BUSY_TIME /100)= (20,649.1  + 1,980.9)/ (2,894,855 /100)= 78.17%

% of Total CPU for Instance = ( DB CPU+ background cpu time)/( BUSY_TIME+IDLE_TIME/100) = (20,649.1  + 1,980.9)/ ((2,894,855+5,568,240) /100) = 26.73%

%DB time waiting for CPU (Resource Manager)= (RSRC_MGR_CPU_WAIT_TIME/100)/DB TIME

 

 

3 TOP SQL

 

TOP SQL 的資料部分來源於 dba_hist_sqlstat

 

3-1 SQL ordered by Elapsed Time ,按照SQL消耗的時間來排列TOP SQL

 

 

SQL ordered by Elapsed Time        Snaps: 70719-70723
-> Resources reported for PL/SQL code includes the resources used by all SQL
   statements called by the code.
-> % Total DB Time is the Elapsed Time of the SQL statement divided
   into the Total Database Time multiplied by 100
-> %Total - Elapsed Time  as a percentage of Total DB time
-> %CPU   - CPU Time      as a percentage of Elapsed Time
-> %IO    - User I/O Time as a percentage of Elapsed Time
-> Captured SQL account for   53.9% of Total DB Time (s):         883,542
-> Captured PL/SQL account for    0.5% of Total DB Time (s):         883,542

        Elapsed                  Elapsed Time
        Time (s)    Executions  per Exec (s)  %Total   %CPU    %IO    SQL Id
---------------- -------------- ------------- ------ ------ ------ -------------
       181,411.3         38,848          4.67   20.5     .0     .1 g0yc9szpuu068

 

 

 

注意對於PL/SQL,SQL Statistics不僅會體現該PL/SQL的執行情況,還會包括該PL/SQL包含的SQL語句的情況。如上例一個TOP PL/SQL執行了448s,而這448s中絕大多數是這個PL/SQL下的一個SQL執行500次耗費的。

則該TOP PL/SQL和TOP SQL都上榜,一個執行一次耗時448s,一個執行500次耗時448s。 如此情況則Elapsed Time加起來可能超過100%的Elapsed Time,這是正常的。

對於鶴立雞群的SQL很有必要一探究竟,跑個@?/rdbms/admin/awrsqrpt看看吧!

 

Elapsed Time (s): 該SQL累計執行所消耗的時間,

Executions :  該SQL在快照時間內 總計執行的次數    ;  注意, 對於在快照時間內還沒有執行完的SQL 不計為1一次,所以如果看到executions=0而 又是TOP SQL,則很有可能是因為該SQL 執行較舊還沒執行完,需要特別關注一下。

 

 

Elapsed Time per Exec (s):平均每次執行該SQL耗費的時間 , 對於OLTP型別的SELECT/INSERT/UPDATE/DELETE而言平均單次執行時間應當非常短,如0.1秒 或者更短才能滿足其業務需求,如果這類輕微的OLTP操作單次也要幾秒鐘的話,是無法滿足對外業務的需求的; 例如你在ATM上提款,並不僅僅是對你的賬務庫的簡單UPDATE,而需要在類似風險控制的前置系統中記錄你本次的流水操作記錄,實際取一次錢可能要有幾十乃至上百個OLTP型別的語句被執行,但它們應當都是十分快速的操作; 如果這些操作也變得很慢,則會出現大量事務阻塞,系統負載升高,DB TIME急劇上升的現象。  對於OLTP資料庫而言 如果執行計劃穩定,那麼這些OLTP操作的效能應當是鐵板釘釘的,但是一旦某個因素 發生變化,例如儲存的明顯變慢、記憶體換頁的大量出現時 則上述的這些transaction操作很可能成數倍到幾十倍的變慢,這將讓此事務系統短期內不可用。

對於維護操作,例如載入或清除資料,大的跑批次、報表而言 Elapsed Time per Exec (s)高一些是正常的。

%Total  該SQL所消耗的時間佔總的DB Time的百分比, 即 (SQL Elapsed Time / Total DB TIME)

% CPU   該SQL 所消耗的CPU 時間 佔 該SQL消耗的時間裡的比例, 即 (SQL CPU Time / SQL Elapsed Time) ,該指標說明了該語句是否是CPU敏感的

%IO 該SQL 所消耗的I/O 時間 佔 該SQL消耗的時間裡的比例, 即(SQL I/O Time/SQL Elapsed Time) ,該指標說明了該語句是否是I/O敏感的

SQL Id : 通過計算SQL 文字獲得的SQL_ID ,不同的SQL文字必然有不同的SQL_ID, 對於10g~11g而言 只要SQL文字不變那麼在資料庫之間 該SQL 對應的SQL_ID應當不不變的, 12c中修改了SQL_ID的計算方法

 

Captured SQL account for   53.9% of Total DB Time (s) 對於不繫結變數的應用來說Top SQL有可能失準,所以要參考本項

 

3-2  SQL ordered by CPU Time

 

 

 

SQL ordered by CPU Time             Snaps: 70719-70723
-> Resources reported for PL/SQL code includes the resources used by all SQL
   statements called by the code.
-> %Total - CPU Time      as a percentage of Total DB CPU
-> %CPU   - CPU Time      as a percentage of Elapsed Time
-> %IO    - User I/O Time as a percentage of Elapsed Time
-> Captured SQL account for   34.9% of Total CPU Time (s):          20,649
-> Captured PL/SQL account for    0.5% of Total CPU Time (s):          20,649

    CPU                   CPU per           Elapsed
  Time (s)  Executions    Exec (s) %Total   Time (s)   %CPU    %IO    SQL Id
---------- ------------ ---------- ------ ---------- ------ ------ -------------
   1,545.0    1,864,424       0.00    7.5    4,687.8   33.0   65.7 8g6a701j83c8q
Module: MZIndexer
SELECT t0.BOOLEAN_VALUE, t0.CLASS_CODE, t0.CREATED, t0.END_DATE, t0.PRODUCT_ATTR
IBUTE_ID, t0.LAST_MODIFIED, t0.OVERRIDE_FLAG, t0.PRICE, t0.PRODUCT_ATTRIBUTE_TYP
E_ID, t0.PRODUCT_ID, t0.PRODUCT_PUB_RELEASE_TYPE_ID, t0.PRODUCT_VOD_TYPE_ID, t0.
SAP_PRODUCT_ID, t0.START_DATE, t0.STRING_VALUE FROM mz_product_attribute t0 WHER

 

 

CPU TIME :   該SQL 在快照時間內累計執行所消耗的CPU 時間片,單位為s

Executions :  該SQL在快照時間內累計執行的次數

CPU per Exec (s) :該SQL 平均單次執行所消耗的CPU時間 ,  即  ( SQL CPU TIME / SQL Executions )

%Total : 該SQL 累計消耗的CPU時間 佔  該時段總的 DB CPU的比例,  即 ( SQL CPU TIME /  Total DB CPU)

% CPU   該SQL 所消耗的CPU 時間 佔 該SQL消耗的時間裡的比例, 即 (SQL CPU Time / SQL Elapsed Time) ,該指標說明了該語句是否是CPU敏感的

%IO 該SQL 所消耗的I/O 時間 佔 該SQL消耗的時間裡的比例, 即(SQL I/O Time/SQL Elapsed Time) ,該指標說明了該語句是否是I/O敏感的

 

 

 

3-3 Buffer Gets SQL ordered by Gets

 

 

SQL ordered by Gets               DB/Inst: ITSCMP/itscmp2  Snaps: 70719-70723
-> Resources reported for PL/SQL code includes the resources used by all SQL
   statements called by the code.
-> %Total - Buffer Gets   as a percentage of Total Buffer Gets
-> %CPU   - CPU Time      as a percentage of Elapsed Time
-> %IO    - User I/O Time as a percentage of Elapsed Time
-> Total Buffer Gets:   2,021,476,421
-> Captured SQL account for   68.2% of Total

     Buffer                 Gets              Elapsed
      Gets   Executions   per Exec   %Total   Time (s)   %CPU    %IO    SQL Id
----------- ----------- ------------ ------ ---------- ------ ------ -----------
4.61155E+08   1,864,424        247.3   22.8    4,687.8   33.0   65.7 8g6a701j83c

 

注意 buffer gets 邏輯讀是消耗CPU TIME的重要源泉, 但並不是說消耗CPU TIME的只有buffer gets。 大多數情況下 SQL order by CPU TIME 和 SQL order by buffers gets 2個部分的TOP SQL 及其排列順序都是一樣的,此種情況說明消耗最多buffer gets的 就是消耗最多CPU 的SQL ,如果我們希望降低系統的CPU使用率,那麼只需要調優SQL 降低buffer gets 即可。

但也並不是100%的情況都是如此, CPU TIME的消耗者 還包括 函式運算、PL/SQL 控制、Latch /Mutex 的Spin等等, 所以SQL order by CPU TIME 和 SQL order by buffers gets 2個部分的TOP SQL 完全不一樣也是有可能的, 需要因地制宜來探究到底是什麼問題導致的High CPU,進而裁度解決之道。

 

Buffer Gets : 該SQL在快照時間內累計執行所消耗的buffer gets,包括了consistent read 和 current read

Executions :  該SQL在快照時間內累計執行的次數

Gets  per Exec : 該SQL平均單次的buffer gets , 對於事務型transaction操作而言 一般該單次buffer gets小於2000

% Total  該SQL 累計執行所消耗的buffer gets佔 總的db buffer gets的比率, (SQL buffer gets / DB total buffer gets)

 

 

 

3-4  Physical Reads  SQL ordered by Reads

 

 

SQL ordered by Reads              DB/Inst: ITSCMP/itscmp2  Snaps: 70719-70723
-> %Total - Physical Reads as a percentage of Total Disk Reads
-> %CPU   - CPU Time      as a percentage of Elapsed Time
-> %IO    - User I/O Time as a percentage of Elapsed Time
-> Total Disk Reads:      56,839,035
-> Captured SQL account for   34.0% of Total

   Physical              Reads              Elapsed
      Reads  Executions per Exec   %Total   Time (s)   %CPU    %IO    SQL Id
----------- ----------- ---------- ------ ---------- ------ ------ -------------
  9,006,163           1 9.0062E+06   15.8      720.9    5.9   80.9 4g36tmp70h185

Physical reads : 該SQL累計執行所消耗的物理讀

Executions :  該SQL在快照時間內累計執行的次數

Reads per Exec : 該SQL 單次執行所消耗的物理讀,  (SQL Physical reads/Executions) , 對於OLTP transaction 型別的操作而言單次一般不超過100

%Total : 該SQL 累計消耗的物理讀 佔  該時段總的 物理讀的比例,  即 ( SQL physical read  /  Total DB physical read )

 

 

3-5 Executions  SQL ordered by Executions

 

 

SQL ordered by Executions         Snaps: 70719-70723
-> %CPU   - CPU Time      as a percentage of Elapsed Time
-> %IO    - User I/O Time as a percentage of Elapsed Time
-> Total Executions:      48,078,147
-> Captured SQL account for   50.4% of Total

                                              Elapsed
 Executions   Rows Processed  Rows per Exec   Time (s)   %CPU    %IO    SQL Id
------------ --------------- -------------- ---------- ------ ------ -----------
   6,327,963      11,249,645            1.8      590.5   47.8   52.7 1avv7759j8r

 

按照 執行次數來排序的話,也是效能報告對比時一個重要的參考因素,因為如果TOP SQL的執行次數有明顯的增長,那麼 效能問題的出現也是意料之中的事情了。 當然執行次數最多的,未必便是對效能影響最大的TOP SQL

 

Executions :  該SQL在快照時間內累計執行的次數

Rows Processed: 該SQL在快照時間內累計執行所處理的總行數

Rows per Exec: SQL平均單次執行所處理的行數,  這個指標在診斷一些 資料問題造成的SQL效能問題時很有用

 

 

3-6 Parse Calls     SQL ordered by Parse Calls

 

 

SQL ordered by Parse Calls          Snaps: 70719-70723
-> Total Parse Calls:       2,160,124
-> Captured SQL account for   58.3% of Total

                            % Total
 Parse Calls  Executions     Parses    SQL Id
------------ ------------ --------- -------------
     496,475      577,357     22.98 d07gaa3wntdff

 

 

 

Parse Calls : 解析呼叫次數, 與上文的 Load Profile中的Parse 數一樣 包括 軟解析soft parse和硬解析hard parse

Executions :  該SQL在快照時間內累計執行的次數

%Total Parses : 本SQL 解析呼叫次數 佔 該時段資料庫總解析次數的比率, 為 (SQL Parse Calls / Total DB Parse Calls)

 

 

3-7  SQL ordered by Sharable Memory

 

 

SQL ordered by Sharable Memory     Snaps: 70719-70723
-> Only Statements with Sharable Memory greater than 1048576 are displayed

Sharable Mem (b)  Executions   % Total    SQL Id
---------------- ------------ -------- -------------
       8,468,359           39     0.08 au89sasqfb2yn
Module: MZContentBridge
SELECT t0.ASPECT_RATIO, t0.CREATED, t0.FILE_EXTENSION, t0.HEIGHT, t0.VIDEO_FILE_
DIMENSIONS_ID, t0.LAST_MODIFIED, t0.NAME, t0.WIDTH FROM MZ_VIDEO_FILE_DIMENSIONS
 t0 WHERE (t0.HEIGHT = :1 AND t0.WIDTH = :2 )

 

 

SQL ordered by Sharable Memory ,    一般該部分僅列出Sharable Mem (b)為1 MB以上的SQL 物件 (Only Statements with Sharable Memory greater than 1048576 are displayed)   資料來源是 DBA_HIST_SQLSTAT.SHARABLE_MEM

Shareable Mem(b):  SQL 物件所佔用的共享記憶體使用量

Executions :  該SQL在快照時間內累計執行的次數

%Total :  該SQL 物件鎖佔共享記憶體 佔總的共享記憶體的比率

 

 

3-8   SQL ordered by Version Count

 

Version Count  Oracle中的執行計劃可以是多版本的,即對於同一個SQL語句有多個不同版本的執行計劃,這些執行計劃又稱作子游標, 而一個SQL語句的文字可以稱作一個父遊標。 一個父遊標對應多個子遊標,產生不同子游標的原因是 SQL在被執行時無法共享之前已經生成的子游標, 原因是多種多樣的,例如 在本session中做了一個優化器引數的修改 例如optimizer_index_cost_adj 從100 修改到99,則本session的優化環境optimizer env將不同於之前的子游標生成環境,這樣就需要生成一個新的子游標,例如:

 

 

SQL> create table emp as select * from scott.emp;

Table created.

SQL> select * from emp where empno=1;

no rows selected

SQL> select /*+ MACLEAN */ * from emp where empno=1;

no rows selected

SQL> select SQL_ID,version_count from V$SQLAREA WHERE SQL_TEXT like '%MACLEAN%' and SQL_TEXT not like '%like%';

SQL_ID        VERSION_COUNT
------------- -------------
bxnnm7z1qmg26             1

SQL> select count(*) from v$SQL where SQL_ID='bxnnm7z1qmg26';

  COUNT(*)
----------
         1

SQL> alter session set optimizer_index_cost_adj=99;

Session altered.

SQL> select /*+ MACLEAN */ * from emp where empno=1;

no rows selected

SQL> select SQL_ID,version_count from V$SQLAREA WHERE SQL_TEXT like '%MACLEAN%' and SQL_TEXT not like '%like%';

SQL_ID        VERSION_COUNT
------------- -------------
bxnnm7z1qmg26             2

SQL> select count(*) from v$SQL where SQL_ID='bxnnm7z1qmg26';

  COUNT(*)
----------
         2

SQL> select child_number ,OPTIMIZER_ENV_HASH_VALUE,PLAN_HASH_VALUE from v$SQL where SQL_ID='bxnnm7z1qmg26';

CHILD_NUMBER OPTIMIZER_ENV_HASH_VALUE PLAN_HASH_VALUE
------------ ------------------------ ---------------
           0               3704128740      3956160932
           1               3636478958      3956160932

 

 

可以看到上述 演示中修改optimizer_index_cost_adj=99 導致CBO 優化器的優化環境發生變化, 表現為不同的OPTIMIZER_ENV_HASH_VALUE,之後生成了2個子遊標,但是這2個子遊標的PLAN_HASH_VALUE同為3956160932,則說明了雖然是不同的子游標但實際子游標裡包含了的執行計劃是一樣的;  所以請注意 任何一個優化環境的變化 (V$SQL_SHARED_CURSOR)以及相關衍生的BUG 都可能導致子游標無法共享,雖然子游標無法共享但這些子游標扔可能包含完全一樣的執行計劃,這往往是一種浪費。

注意V$SQLAREA.VERSION_COUNT 未必等於select count(*) FROM V$SQL WHERE SQL_ID=”  ,即 V$SQLAREA.VERSION_COUNT 顯示的子游標數目 未必等於當前例項中還存有的子游標數目, 由於shared pool aged out演算法和其他一些可能導致遊標失效的原因存在,所以子游標被清理掉是很常見的事情。 V$SQLAREA.VERSION_COUNT只是一個計數器,它告訴我們曾經生成了多少個child cursor,但不保證這些child 都還在shared pool裡面。

此外可以通過v$SQL的child_number欄位來分析該問題,如果child_number存在跳號則也說明了部分child被清理了。

 

 

子游標過多的影響, 當子游標過多(例如超過3000個時),程式需要去掃描長長的子游標列表child cursor list以找到一個合適的子游標child cursor,進而導致cursor sharing 效能問題 現大量的Cursor: Mutex S 和 library cache lock等待事件。

關於子游標的數量控制,可以參考《11gR2遊標共享新特性帶來的一些問題以及_cursor_features_enabled、_cursor_obsolete_threshold和106001 event》

 

Executions :  該SQL在快照時間內累計執行的次數

 

Hash Value :  共享SQL 的雜湊值

 

Only Statements with Version Count greater than 20 are displayed    注意該環節僅列出version count > 20的語句

 

 

 3-9   Cluster Wait Time SQL ordered by Cluster Wait Time

 

 

SQL ordered by Cluster Wait Time  DB/Inst: ITSCMP/itscmp2  Snaps: 70719-70723
-> %Total - Cluster Time  as a percentage of Total Cluster Wait Time
-> %Clu   - Cluster Time  as a percentage of Elapsed Time
-> %CPU   - CPU Time      as a percentage of Elapsed Time
-> %IO    - User I/O Time as a percentage of Elapsed Time
-> Only SQL with Cluster Wait Time > .005 seconds is reported
-> Total Cluster Wait Time (s):         525,480
-> Captured SQL account for   57.2% of Total

       Cluster                        Elapsed
 Wait Time (s)   Executions %Total    Time(s)   %Clu   %CPU    %IO    SQL Id
-------------- ------------ ------ ---------- ------ ------ ------ -------------
     132,639.3       38,848   25.2  181,411.3   73.1     .0     .1 g0yc9szpuu068

 

 

 

Only SQL with Cluster Wait Time > .005 seconds is reported  這個環節僅僅列出Cluster Wait Time > 0.005 s的SQL

該環節的資料主要來源 於 DBA_HIST_SQLSTAT.CLWAIT_DELTA Delta value of cluster wait time

Cluster Wait Time :   該SQL語句累計執行過程中等待在叢集等待上的時間,單位為秒, 你可以理解為 當一個SQL 執行過程中遇到了gc buffer busy、gc cr multi block request 之類的Cluster等待,則這些等待消耗的時間全部算在 Cluster Wait Time裡。

Executions :  該SQL在快照時間內累計執行的次數

%Total:  該SQL所消耗的Cluster Wait time 佔 總的Cluster Wait time的比率, 為(SQL cluster wait time / DB total cluster Wait Time)

%Clu: 該SQL所消耗的Cluster Wait time 佔該SQL 總的耗時的比率,為(SQL cluster wait time / SQL elapsed Time),該指標說明了該語句是否是叢集等待敏感的

% CPU   該SQL 所消耗的CPU 時間 佔 該SQL消耗的時間裡的比例, 即 (SQL CPU Time / SQL Elapsed Time) ,該指標說明了該語句是否是CPU敏感的

%IO 該SQL 所消耗的I/O 時間 佔 該SQL消耗的時間裡的比例, 即(SQL I/O Time/SQL Elapsed Time) ,該指標說明了該語句是否是I/O敏感的

 

 

4 Instance Activity Stats 

 

 

Instance Activity Stats           DB/Inst: ITSCMP/itscmp2  Snaps: 70719-70723
-> Ordered by statistic name

Statistic                                     Total     per Second     per Trans
-------------------------------- ------------------ -------------- -------------
Batched IO (bound) vector count             450,449          124.6           1.8
Batched IO (full) vector count                5,485            1.5           0.0
Batched IO (space) vector count               1,467            0.4           0.0
Batched IO block miss count               4,119,070        1,139.7          16.7
Batched IO buffer defrag count               39,710           11.0           0.2
Batched IO double miss count                297,357           82.3           1.2
Batched IO same unit count                1,710,492          473.3           7.0
Batched IO single block count               329,521           91.2           1.3
Batched IO slow jump count                   47,104           13.0           0.2
Batched IO vector block count             2,069,852          572.7           8.4
Batched IO vector read count                262,161           72.5           1.1
Block Cleanout Optim referenced              37,574           10.4           0.2
CCursor + sql area evicted                    1,457            0.4           0.0
...............

 

Instance Activity Stats  的資料來自於 DBA_HIST_SYSSTAT,DBA_HIST_SYSSTAT來自於V$SYSSTAT。

這裡每一個指標都代表一種資料庫行為的活躍度,例如redo size 是指生成redo的量,sorts (disk) 是指磁碟排序的次數,table scans (direct read)  是指直接路徑掃描表的次數。

雖然這些指標均只有Total、per Second每秒、 per Trans每事務 三個維度,但對診斷問題十分有用。

我們來舉幾個例子:

1、 例如當 Top Event 中存在direct path read為Top 等待事件, 則需要分清楚是對普通堆表的direct read還是由於大量LOB讀造成的direct path read, 這個問題可以藉助 table scans (direct read)、table scans (long tables)、physical reads direct   、physical reads direct (lob) 、physical reads direct temporary幾個指標來分析, 假設 physical reads direct   >> 遠大於 physical reads direct (lob)+physical reads direct temporary , 且有較大的table scans (direct read)、table scans (long tables)  (注意這2個指標代表的是 掃描表的次數 不同於上面的phsical reads 的單位為 塊數*次數), 則說明了是 大表掃描引起的direct path read。

 

 

 

2、 例如當 Top Event中存在enq Tx:index contention等待事件, 則需要分析root node splits   、branch node splits   、leaf node 90-10 splits   、leaf node splits 、failed probes on index block rec 幾個指標,具體可以見文件《Oracle索引塊分裂split資訊彙總》

 

 

3、系統出現IO型別的等待事件為TOp Five 例如 db file sequential/scattered read ,我們需要通過AWR來獲得系統IO吞吐量和IOPS:

physical read bytes 主要是應用造成的物理讀取(Total size in bytes of all disk reads by application activity (and not other instance activity) only.) 而physical read total bytes則包括了 rman備份恢復 和後臺維護任務所涉及的物理讀位元組數,所以我們在研究IO負載時一般參考 physical read total bytes;以下4對指標均存在上述的關係

 

 

physical read bytes physical read total bytes 物理讀的吞吐量/秒
physical read IO requests physical read total IO requests 物理讀的IOPS
physical write bytes physical write total bytes 物理寫的吞吐量/秒
physical write IO requests physical write total IO requests 物理寫的IOPS

 

總的物理吞吐量/秒=physical read total bytes+physical write total bytes

總的物理IOPS= physical read total IO requests+ physical write total IO requests

 

IO的主要指標 吞吐量、IOPS和延遲 均可以從AWR中獲得了, IO延遲的資訊可以從 User I/O的Wait Class Avg Wait time獲得,也可以參考11g出現的IOStat by Function summary

 

 

Instance Activity Stats有大量的指標,但是對於這些指標的介紹 沒有那一份文件有完整詳盡的描述,即便在Oracle原廠內部要沒有(或者是Maclean沒找到),實際是開發人員要引入某一個Activity Stats是比較容易的,並不像申請引入一個新後臺程式那樣麻煩,Oracle對於新版本中新後臺程式的引入有嚴格的要求,但Activity Stats卻很容易,往往一個one-off patch中就可以引入了,實際上Activity Stats在原始碼層僅僅是一些計數器。’

較為基礎的statistics,大家可以參考官方文件的Statistics Descriptions描述,地址在這裡。

 

對於深入的指標 例如  “Batched IO (space) vector count”這種由於某些新特性被引入的,一般沒有很詳細的材料,需要到原始碼中去閱讀相關模組才能總結其用途,對於這個工作一般原廠是很延遲去完成的,所以沒有一個完整的列表。 如果大家有對此的疑問,請去t.askmaclean.com 發一個帖子提問。

 

 

Instance Activity Stats - Absolute Values  Snaps: 7071
-> Statistics with absolute values (should not be diffed)

Statistic                            Begin Value       End Value
-------------------------------- --------------- ---------------
session pga memory max           1.157882826E+12 1.154290304E+12
session cursor cache count           157,042,373     157,083,136
session uga memory               5.496429019E+14 5.496775467E+14
opened cursors current                   268,916         265,694
workarea memory allocated                827,704         837,487
logons current                             2,609           2,613
session uga memory max           1.749481584E+13 1.749737418E+13
session pga memory               4.150306913E+11 4.150008177E+11

 

 

 

 

Instance Activity Stats – Absolute Values是顯示快照 起點 和終點的一些指標的絕對值

  • logon current 當前時間點的登入數
  • opened cursors current 當前開啟的遊標數
  • session cursor cache count 當前存在的session快取遊標數

 

 

 

 

Instance Activity Stats - Thread ActivityDB/Inst: G10R25/G10R25  Snaps: 3663-3
-> Statistics identified by '(derived)' come from sources other than SYSSTAT 

Statistic                                     Total  per Hour  
-------------------------------- ------------------ ---------  
log switches (derived)                           17  2,326.47

 

 

log switches (derived) 日誌切換次數 , 見 《理想的線上重做日誌切換時間是多長?》

 

 

5 IO 統計

 

5-1 Tablespace IO Stats  基於表空間分組的IO資訊

 

 

 

Tablespace IO Stats               DB/Inst: ITSCMP/itscmp2  Snaps: 70719-70723
-> ordered by IOs (Reads + Writes) desc

Tablespace
------------------------------
                 Av       Av     Av                       Av     Buffer  Av Buf
         Reads Reads/s  Rd(ms) Blks/Rd       Writes Writes/s      Waits  Wt(ms)
-------------- ------- ------- ------- ------------ -------- ---------- -------
DATA_TS
    17,349,398   4,801     2.3     1.5      141,077       39  4,083,704     5.8
INDEX_TS
     9,193,122   2,544     2.0     1.0      238,563       66  3,158,187    46.1
UNDOTBS1
     1,582,659     438     0.7     1.0            2        0     12,431    69.0

 

reads : 指 該表空間上發生的物理讀的次數(單位不是塊,而是次數)

Av Reads/s : 指該表空間上平均每秒的物理讀次數 (單位不是塊,而是次數)

Av Rd(ms): 指該表空間上每次讀的平均讀取延遲

 

Av Blks/Rd: 指該表空間上平均每次讀取的塊數目,因為一次物理讀可以讀多個資料塊;如果Av Blks/Rd>>1 則可能系統有較多db file scattered read 可能是診斷FULL TABLE SCAN或FAST FULL INDEX SCAN,需要關注table scans (long tables) 和index fast full scans (full)   2個指標

 

Writes : 該表空間上發生的物理寫的次數 ;  對於那些Writes總是等於0的表空間 不妨瞭解下是否資料為只讀,如果是可以通過read only tablespace來解決 RAC中的一些效能問題。

Av Writes/s  : 指該表空間上平均每秒的物理寫次數

buffer Waits:  該表空間上發生buffer busy waits和read by other session的次數( 9i中buffer busy waits包含了read by other session)。

Av Buf Wt(ms):  該表空間上發生buffer Waits的平均等待時間,單位為ms

 

 

 

 5-2 File I/O

 

 

File IO Stats                    Snaps: 70719-70723
-> ordered by Tablespace, File

Tablespace               Filename
------------------------ ----------------------------------------------------
                 Av       Av     Av                       Av     Buffer  Av Buf
         Reads Reads/s  Rd(ms) Blks/Rd       Writes Writes/s      Waits  Wt(ms)
-------------- ------- ------- ------- ------------ -------- ---------- -------
AMG_ALBUM_IDX_TS         +DATA/itscmp/plugged/data2/amg_album_idx_ts01.dbf
        23,298       6     0.6     1.0            2        0          0     0.0
AMG_ALBUM_IDX_TS         +DATA/itscmp/plugged/data3/amg_album_idx_ts02.dbf
         3,003       1     0.6     1.0            2        0          0     0.0

 

Tablespace 表空間名

FileName  資料檔案的路徑

Reads: 該資料檔案上累計發生過的物理讀次數,不是塊數

Av Reads/s: 該資料檔案上平均每秒發生過的物理讀次數,不是塊數

Av Rd(ms): 該資料檔案上平均每次物理讀取的延遲,單位為ms

Av Blks/Rd:  該資料檔案上平均每次讀取涉及到的塊數,OLTP環境該值接近 1

Writes : 該資料檔案上累計發生過的物理寫次數,不是塊數

Av Writes/s: 該資料檔案上平均每秒發生過的物理寫次數,不是塊數

buffer Waits:  該資料檔案上發生buffer busy waits和read by other session的次數( 9i中buffer busy waits包含了read by other session)。

Av Buf Wt(ms):  該資料檔案上發生buffer Waits的平均等待時間,單位為ms

 

若某個表空間上有較高的IO負載,則有必要分析一下 是否其所屬的資料檔案上的IO 較為均勻 還是存在傾斜, 是否需要結合儲存特徵來 將資料均衡分佈到不同磁碟上的資料檔案上,以優化 I/O

 

 

 

6 緩衝池統計 Buffer Pool Statistics

 

 

 

Buffer Pool Statistics              Snaps: 70719-70723
-> Standard block size Pools  D: default,  K: keep,  R: recycle
-> Default Pools for other block sizes: 2k, 4k, 8k, 16k, 32k

                                                            Free   Writ   Buffer
     Number of Pool       Buffer     Physical    Physical   Buff   Comp     Busy
P      Buffers Hit%         Gets        Reads      Writes   Wait   Wait    Waits
--- ---------- ---- ------------ ------------ ----------- ------ ------ --------
16k     15,720  N/A            0            0           0      0      0        0
D    2,259,159   98 2.005084E+09   42,753,650     560,460      0      1 8.51E+06

 

該環節的資料主要來源於WRH$_BUFFER_POOL_STATISTICS, 而WRH$_BUFFER_POOL_STATISTICS是定期彙總v$SYSSTAT中的資料

 

P   pool池的名字   D: 預設的緩衝池 default buffer pool  , K : Keep Pool , R: Recycle Pool ;  2k 4k 8k  16k 32k: 代表各種非標準塊大小的緩衝池

Number of buffers:  實際的 緩衝塊數目,   約等於  池的大小 / 池的塊大小

Pool Hit % :  該緩衝池的命中率

Buffer Gets: 對該緩衝池的中塊的訪問次數 包括  consistent gets 和 db block gets

Physical Reads: 該緩衝池Buffer Cache引起了多少物理讀, 其實是physical reads cache ,單位為 塊數*次數

Physical Writes :該緩衝池中Buffer cache被寫的物理寫, 其實是physical writes from cache, 單位為 塊數*次數

Free Buffer Waits:  等待空閒緩衝的次數, 可以看做該buffer pool 發生free buffer waits 等待的次數

Write Comp Wait:   等待DBWR寫入髒buffer到磁碟的次數, 可以看做該buffer pool發生write complete waits等待的次數

Buffer Busy Waits:  該緩衝池發生buffer busy wait 等待的次數

 

 

7-1 Checkpoint Activity  檢查點與 Instance Recovery Stats    例項恢復

 

 

Checkpoint Activity         Snaps: 70719-70723
-> Total Physical Writes:                      590,563

                                          Other    Autotune      Thread
       MTTR    Log Size    Log Ckpt    Settings        Ckpt        Ckpt
     Writes      Writes      Writes      Writes      Writes      Writes
----------- ----------- ----------- ----------- ----------- -----------
          0           0           0           0      12,899           0
          -------------------------------------------------------------

Instance Recovery Stats     Snaps: 70719-70723
-> B: Begin Snapshot,  E: End Snapshot

                                                                            Estd
  Targt  Estd                                     Log Ckpt Log Ckpt    Opt   RAC
  MTTR   MTTR Recovery  Actual   Target   Log Sz   Timeout Interval    Log Avail
   (s)    (s) Estd IOs RedoBlks RedoBlks RedoBlks RedoBlks RedoBlks  Sz(M)  Time
- ----- ----- -------- -------- -------- -------- -------- -------- ------ -----
B     0     6    12828   477505  1786971  5096034  1786971      N/A    N/A     3
E     0     7    16990   586071  2314207  5096034  2314207      N/A    N/A     3
          -------------------------------------------------------------

該環節的資料來源於WRH$_INSTANCE_RECOVERY

MTTR  Writes  :   為了滿足FAST_START_MTTR_TARGET 指定的MTTR值 而做出的物理寫  WRITES_MTTR

Log Size Writes :由於最小的redo log file而做出的物理寫 WRITES_LOGFILE_SIZE

Log Ckpt writes: 由於 LOG_CHECKPOINT_INTERVAL 和 LOG_CHECKPOINT_TIMEOUT 驅動的增量檢查點而做出的物理寫 WRITES_LOG_CHECKPOINT_SETTINGS

Other Settings Writes :由於其他設定(例如FAST_START_IO_TARGET)而引起的物理寫,  WRITES_OTHER_SETTINGS

Autotune Ckpt Writes : 由於自動調優檢查點而引起的物理寫, WRITES_AUTOTUNE

Thread Ckpt Writes :由於thread checkpoint而引起的物理寫,WRITES_FULL_THREAD_CKPT
B 代表 開始點, E 代表結尾

Targt MTTR (s) : 目標MTTR (mean time to recover)意為有效恢復時間,單位為秒。 TARGET_MTTR 的計算基於 給定的引數FAST_START_MTTR_TARGET,而TARGET_MTTR作為內部使用。 實際在使用中 Target MTTR未必能和FAST_START_MTTR_TARGET一樣。 如果FAST_START_MTTR_TARGET過小,那麼TARGET_MTTR 將是系統條件所允許的最小估算值;  如果FAST_START_MTTR_TARGET過大,則TARGET_MTTR以保守演算法計算以獲得完成恢復的最長估算時間。

 

estimated_mttr (s):   當前基於 髒buffer和重做日誌塊的數量,而評估出的有效恢復時間 。 它的估算告訴使用者 以當下系統的負載若發生例項crash,則需要多久時間來做crash recovery的前滾操作,之後才能開啟資料庫。

Recovery Estd IOs :實際是當前buffer cache中的髒塊數量,一旦例項崩潰 這些髒塊要被前滾

Actual RedoBlks :  當前實際需要恢復的redo重做塊數量

Target RedoBlks :是 Log Sz RedoBlks 、Log Ckpt  Timeout  RedoBlks、 Log Ckpt Interval  RedoBlks 三者的最小值

Log Sz RedoBlks :   代表 必須在log file switch日誌切換之前完成的 checkpoint 中涉及到的redo block,也叫max log lag; 資料來源select LOGFILESZ   from X$targetrba;  select LOG_FILE_SIZE_REDO_BLKS from v$instance_recovery;

Log Ckpt Timeout RedoBlks : 為了滿足LOG_CHECKPOINT_TIMEOUT  所需要處理的redo block數,lag for checkpoint timeout ; 資料來源select CT_LAG from x$targetrba;

Log Ckpt Interval RedoBlks :為了滿足LOG_CHECKPOINT_INTERVAL 所需要處理的redo block數, lag for checkpoint interval; 資料來源select CI_LAG from x$targetrba;

Opt Log Sz(M) :  基於FAST_START_MTTR_TARGET 而估算出來的redo logfile 的大小,單位為MB 。 Oracle官方推薦建立的重做日誌大小至少大於這個估算值

 

Estd RAC Avail Time  :指評估的 RAC中節點失敗後 叢集從凍結到部分可用的時間, 這個指標僅在RAC中可用,單位為秒。 ESTD_CLUSTER_AVAILABLE_TIME

 

 

 

 7-2 Buffer Pool Advisory 緩衝池建議

 

 

Buffer Pool Advisory                      DB/Inst: ITSCMP/itscmp2  Snap: 70723
-> Only rows with estimated physical reads >0 are displayed
-> ordered by Block Size, Buffers For Estimate

                                    Est
                                   Phys      Estimated                  Est
    Size for   Size      Buffers   Read     Phys Reads     Est Phys %DBtime
P    Est (M) Factor  (thousands) Factor    (thousands)    Read Time for Rds
--- -------- ------ ------------ ------ -------------- ------------ -------
D      1,920     .1          227    4.9  1,110,565,597            1 1.0E+09
D      3,840     .2          454    3.6    832,483,886            1 7.4E+08
D      5,760     .3          680    2.8    634,092,578            1 5.6E+08
D      7,680     .4          907    2.2    500,313,589            1 4.3E+08
D      9,600     .5        1,134    1.8    410,179,557            1 3.5E+08
D     11,520     .6        1,361    1.5    348,214,283            1 2.9E+08
D     13,440     .7        1,588    1.3    304,658,441            1 2.5E+08
D     15,360     .8        1,814    1.2    273,119,808            1 2.2E+08
D     17,280     .9        2,041    1.1    249,352,943            1 2.0E+08
D     19,200    1.0        2,268    1.0    230,687,206            1 1.8E+08
D     19,456    1.0        2,298    1.0    228,664,269            1 1.8E+08
D     21,120    1.1        2,495    0.9    215,507,858            1 1.7E+08
D     23,040    1.2        2,722    0.9    202,816,787            1 1.6E+08
D     24,960    1.3        2,948    0.8    191,974,196            1 1.5E+08
D     26,880    1.4        3,175    0.8    182,542,765            1 1.4E+08
D     28,800    1.5        3,402    0.8    174,209,199            1 1.3E+08
D     30,720    1.6        3,629    0.7    166,751,631            1 1.2E+08
D     32,640    1.7        3,856    0.7    160,002,420            1 1.2E+08
D     34,560    1.8        4,082    0.7    153,827,351            1 1.1E+08
D     36,480    1.9        4,309    0.6    148,103,338            1 1.1E+08
D     38,400    2.0        4,536    0.6    142,699,866            1 1.0E+08

 

緩衝池的顆粒大小 可以參考 SELECT * FROM V$SGAINFO where name like(‘Granule%’);
P 指 緩衝池的名字  可能包括 有 D default buffer pool , K  Keep Pool , R recycle Pool

Size For Est(M):  指以該尺寸的buffer pool作為評估的物件,一般是 目前current size的 10% ~ 200%,以便了解 buffer pool 增大 ~減小 對物理讀的影響

Size Factor :  尺寸因子, 只 對應buffer pool 大小  對 當前設定的比例因子, 例如current_size是 100M , 則如果評估值是110M 那麼 size Factor 就是 1.1

Buffers (thousands) :指這個buffer pool 尺寸下的buffer 數量, 要乘以1000才是實際值

Est  Phys Read Factor :評估的物理讀因子, 例如當前尺寸的buffer pool 會引起100個物理讀, 則別的尺寸的buffer pool如果引起 120個物理讀, 那麼 對應尺寸的Est  Phys Read Factor就是1.2

Estimated Phys Reads (thousands):評估的物理讀數目, 要乘以 1000才是實際值, 顯然不同尺寸的buffer pool對應不同的評估的物理讀數目

Est Phys Read Time : 評估的物理讀時間

Est %DBtime for Rds:評估的物理讀佔DB TIME的比率

 

 

我們 看buffer pool advisory 一般有2個目的:

 

  1. 在物理讀較多的情況下,希望通過增加buffer pool 大小來緩解物理讀等待,這是我們關注Size Factor > 1的buffer pool尺寸是否能共有效減少Est Phys Read  Factor, 如果Est Phys Read  Factor隨著Size Factor 增大 而顯著減少,那麼說明增大buffer cache 是可以有效減少物理讀的。
  2.  在記憶體緊張的情況下 ,希望從buffer pool中勻出部分記憶體來移作他用, 但是又不希望 buffer cache變小導致 物理讀增多 效能下降, 則此時 觀察Est Phys Read  Factor 是否隨著Size Factor 減小而 顯著增大, 如果不是 則說明減少部分buffer cache 不會導致 物理讀大幅增加,也就可以安心 減少 buffer cache

 

注意 Size Factor 和 Est Phys Read  Factor之間不是簡單的 線性關係,所以需要人為介入評估得失

 

 

 

 7-3 PGA Aggr Summary

 

 

PGA Aggr Summary                 Snaps: 70719-70723
-> PGA cache hit % - percentage of W/A (WorkArea) data processed only in-memory

PGA Cache Hit %   W/A MB Processed  Extra W/A MB Read/Written
--------------- ------------------ --------------------------
           99.9            412,527                        375

 

PGA Cache Hit % : 指 W/A WorkArea工作區的資料僅在記憶體中處理的比率, PGA快取命中率

workarea是PGA中負責處理 排序、雜湊連線和點陣圖合併操作的區域; workarea 也叫做 SQL 作業區域

W/A  MB processes:   指 在Workarea中處理過的資料的量,單位為MB

Extra W/A MB Read/Written :  指額外從磁碟上 讀寫的 工作區資料, 單位為 MB

 

 

7-4 PGA Aggr Target Stats

 

 

Warning:  pga_aggregate_target was set too low for current workload, as this
          value was exceeded during this interval.  Use the PGA Advisory view
          to help identify a different value for pga_aggregate_target.
PGA Aggr Target Stats       Snaps: 70719-70723
-> B: Begin Snap   E: End Snap (rows dentified with B or E contain data
   which is absolute i.e. not diffed over the interval)
-> Auto PGA Target - actual workarea memory target
-> W/A PGA Used    - amount of memory used for all Workareas (manual + auto)
-> %PGA W/A Mem    - percentage of PGA memory allocated to workareas
-> %Auto W/A Mem   - percentage of workarea memory controlled by Auto Mem Mgmt
-> %Man W/A Mem    - percentage of workarea memory under manual control

                                                %PGA  %Auto   %Man
    PGA Aggr   Auto PGA   PGA Mem    W/A PGA     W/A    W/A    W/A Global Mem
   Target(M)  Target(M)  Alloc(M)    Used(M)     Mem    Mem    Mem   Bound(K)
- ---------- ---------- ---------- ---------- ------ ------ ------ ----------
B      8,192        512   23,690.5      150.1     .6  100.0     .0    838,860
E      8,192        512   23,623.6      156.9     .7  100.0     .0    838,860
          -------------------------------------------------------------

 

此環節的資料來源主要是 WRH$_PGASTAT

PGA Aggr  Target(M) :本質上就是pga_aggregate_target , 當然在AMM(memory_target)環境下 這個值可能會自動變化

Auto PGA Target(M)  : 在自動PGA 管理模式下 實際可用的工作區記憶體  “aggregate PGA auto target “, 因為PGA還有其他用途 ,不能全部作為workarea memory

PGA Mem Alloc(M) :目前已分配的PGA記憶體,  alloc  不等於 inuse 即分配的記憶體不等於在使用的記憶體,理論上PGA會將確實不使用的記憶體返回給OS(PGA memory freed back to OS) ,但是存在PGA佔用大量記憶體而不釋放的場景

在上例中 pga_aggregate_target 僅為8192M ,而實際processes 在 2,615~ 8000之間,如果一個程式耗費5MB的PGA 也需要 10000M的PGA ,而實際這裡 PGA Mem Alloc(M)是23,690 M ,這說明 存在PGA 的過載, 需要調整pga_aggregate_target

 

W/A PGA Used(M) :所有的工作區workarea(包括manual和 auto)使用的記憶體總和量, 單位為MB

%PGA W/A Mem:  分配給workarea的記憶體量佔總的PGA的比例,  (W/A PGA Used)/PGA Mem Alloc

%Auto W/A Mem : AUTO 自動工作區管理所控制的記憶體(workarea_size_policy=AUTO) 佔總的workarea記憶體的比例

%Man W/A Mem : MANUAL 手動工作區管理所控制的記憶體(workarea_size_policy=MANUAL)佔總的workarea記憶體的比例

Global Mem Bound(K) : 指 在自動PGA管理模式下一個工作區所能分配的最大記憶體(注意 一個SQL執行過程中可能有多個工作區workarea)。 Global Mem Bound(K)這個指標在例項執行過程中將被持續性的修正,以反應資料庫當時工作區的負載情況。顯然在有眾多活躍工作區的系統負載下相應地Global Mem Bound將會下降。 但應當保持global bound值不要小於1 MB , 否則建議 調高pga_aggregate_target

 

 

 7-5 PGA Aggr Target Histogram

 

 

PGA Aggr Target Histogram           Snaps: 70719-70723
-> Optimal Executions are purely in-memory operations

  Low     High
Optimal Optimal    Total Execs  Optimal Execs 1-Pass Execs M-Pass Execs
------- ------- -------------- -------------- ------------ ------------
     2K      4K        262,086        262,086            0            0
    64K    128K            497            497            0            0
   128K    256K            862            862            0            0
   256K    512K            368            368            0            0
   512K   1024K        440,585        440,585            0            0
     1M      2M         68,313         68,313            0            0
     2M      4M            169            161            8            0
     4M      8M             50             42            8            0
     8M     16M             82             82            0            0
    16M     32M              1              1            0            0
    32M     64M             12             12            0            0
   128M    256M              2              0            2            0
          -------------------------------------------------------------

 

 

資料來源:WRH$_SQL_WORKAREA_HISTOGRAM

Low Optimal: 此行所包含工作區workarea最適合記憶體要求的下限

High Optimal: 此行所包含工作區workarea最適合記憶體要求的上限

Total Execs: 在 Low Optimal~High Optimal 範圍工作區內完成的總執行數

 

Optimal execs: optimal 執行是指完全在PGA記憶體中完成的執行次數

1-pass Execs :  指操作過程中僅發生1次磁碟讀取的執行次數

M-pass Execs:  指操作過程中發生了1次以上的磁碟讀取, 頻發磁碟讀取的執行次數

 

 

 

 

 7-6 PGA Memory Advisory

 

PGA Memory Advisory                  Snap: 70723
-> When using Auto Memory Mgmt, minimally choose a pga_aggregate_target value
   where Estd PGA Overalloc Count is 0

                                       Estd Extra    Estd P Estd PGA
PGA Target    Size           W/A MB   W/A MB Read/    Cache Overallo    Estd
  Est (MB)   Factr        Processed Written to Disk   Hit %    Count    Time
---------- ------- ---------------- ---------------- ------ -------- -------
     1,024     0.1  2,671,356,938.7    387,531,258.9   87.0 1.07E+07 7.9E+11
     2,048     0.3  2,671,356,938.7    387,529,979.1   87.0 1.07E+07 7.9E+11
     4,096     0.5  2,671,356,938.7    387,518,881.8   87.0 1.07E+07 7.9E+11
     6,144     0.8  2,671,356,938.7    387,420,749.5   87.0 1.07E+07 7.9E+11
     8,192     1.0  2,671,356,938.7     23,056,196.5   99.0 1.07E+07 6.9E+11
     9,830     1.2  2,671,356,938.7     22,755,192.6   99.0 6.81E+06 6.9E+11
    11,469     1.4  2,671,356,938.7     20,609,438.5   99.0 4.15E+06 6.9E+11
    13,107     1.6  2,671,356,938.7     19,021,139.1   99.0  581,362 6.9E+11
    14,746     1.8  2,671,356,938.7     18,601,191.0   99.0  543,531 6.9E+11
    16,384     2.0  2,671,356,938.7     18,561,361.1   99.0  509,687 6.9E+11
    24,576     3.0  2,671,356,938.7     18,527,422.3   99.0  232,817 6.9E+11
    32,768     4.0  2,671,356,938.7     18,511,872.6   99.0  120,180 6.9E+11
    49,152     6.0  2,671,356,938.7     18,500,815.3   99.0    8,021 6.9E+11
    65,536     8.0  2,671,356,938.7     18,498,733.0   99.0        0 6.9E+11

 

 

 

PGA Target   Est (MB)  用以評估的 PGA_AGGREGATE _TARGET值

Size Factr   , 當前用以評估的PGA_AGGREGATE _TARGET 和 當前實際設定的PGA_AGGREGATE _TARGET 之間的 比例因子  PGA Target Est / PGA_AGGREGATE_TARGE

W/A MB Processed :workarea中要處理的資料量, 單位為MB

Estd Extra  W/A MB Read/ Written to Disk :   以 one-pass 、M-Pass方式處理的資料量預估值, 單位為MB

Estd P Cache Hit % :  預估的PGA快取命中率

Estd PGA Overalloc Count: 預估的PGA過載量, 如上文所述PGA_AGGREGATE _TARGET僅是一個目標值,無法真正限制PGA記憶體的使用,當出現 PGA記憶體硬性需求時會產生PGA overallocate 過載(When using Auto Memory Mgmt, minimally choose a pga_aggregate_target value where Estd PGA Overalloc Count is 0)

 

 

 

7-7  Shared Pool Advisory

 

Shared Pool Advisory                Snap: 70723
-> SP: Shared Pool     Est LC: Estimated Library Cache   Factr: Factor
-> Note there is often a 1:Many correlation between a single logical object
   in the Library Cache, and the physical number of memory objects associated
   with it.  Therefore comparing the number of Lib Cache objects (e.g. in
   v$librarycache), with the number of Lib Cache Memory Objects is invalid.

                                       Est LC Est LC  Est LC Est LC   
  Shared    SP   Est LC                  Time   Time    Load   Load       Est LC
    Pool  Size     Size       Est LC    Saved  Saved    Time   Time      Mem Obj
 Size(M) Factr      (M)      Mem Obj      (s)  Factr     (s)  Factr     Hits (K)
-------- ----- -------- ------------ -------- ------ ------- ------ ------------
     304    .8       56        3,987    7,728    1.0      61    1.4          332
     352    .9      101        6,243    7,745    1.0      44    1.0          334
     400   1.0      114        7,777    7,745    1.0      44    1.0          334
     448   1.1      114        7,777    7,745    1.0      44    1.0          334
     496   1.2      114        7,777    7,745    1.0      44    1.0          334
     544   1.4      114        7,777    7,745    1.0      44    1.0          334
     592   1.5      114        7,777    7,745    1.0      44    1.0          334
     640   1.6      114        7,777    7,745    1.0      44    1.0          334
     688   1.7      114        7,777    7,745    1.0      44    1.0          334
     736   1.8      114        7,777    7,745    1.0      44    1.0          334
     784   2.0      114        7,777    7,745    1.0      44    1.0          334
     832   2.1      114        7,777    7,745    1.0      44    1.0          334
          -------------------------------------------------------------

 

Shared  Pool  Size(M) :  用以評估的shared pool共享池大小,在AMM /ASMM環境下 shared_pool 大小都可能浮動

SP Size Factr :共享池大小的比例因子, (Shared Pool Size for Estim / SHARED_POOL_SIZE)

Estd LC Size(M) : 評估的 library cache 大小 ,單位為MB , 因為是shared pool中包含 library cache 當然還有其他例如row cache

Est LC Mem Obj   指評估的指定大小的共享池內的library cache memory object的數量  ESTD_LC_MEMORY_OBJECTS

Est LC Time Saved(s):   指在 指定的共享池大小情況下可找到需要的library cache memory objects,從而節約的解析時間 。  這些節約的解析時間也是 花費在共享池內重複載入需要的物件(reload),這些物件可能因為共享池沒有足夠的free memory而被aged out.  ESTD_LC_TIME_SAVED

Est LC Time Saved Factr : Est LC Time Saved(s)的比例因子,(  Est LC Time Saved(s)/ Current LC Time Saved(s) )   ESTD_LC_TIME_SAVED_FACTOR

Est LC Load Time (s):  在指定的共享池大小情況下解析的耗時

Est LC Load Time Factr:Est LC Load Time (s)的比例因子, (Est LC Load Time (s)/ Current LC Load Time (s))         ESTD_LC_LOAD_TIME_FACTOR

Est LC  Mem Obj Hits (K) :  在指定的共享池大小情況下需要的library cache memory object正好在共享池中被找到的次數  ESTD_LC_MEMORY_OBJECT_HITS;

 

對於想縮小 shared_pool_size 共享池大小的需求,可以關注Est LC  Mem Obj Hits (K) ,如上例中共享池為352M時Est LC  Mem Obj Hits (K) 就為334且之後不動,則可以考慮縮小shared_pool_size到該值,但要注意每個版本/平臺上對共享池的最低需求,包括RAC中gcs resource 、gcs shadow等資源均駐留在shared pool中,增大db_cache_size時要對應關注。

 

 

 

 7-8 SGA Target Advisory 

 

SGA Target Advisory    Snap: 70723

SGA Target   SGA Size       Est DB     Est Physical
  Size (M)     Factor     Time (s)            Reads
---------- ---------- ------------ ----------------
     3,752        0.1 1.697191E+09 1.4577142918E+12
     7,504        0.3 1.222939E+09  832,293,601,354
    11,256        0.4 1.000162E+09  538,390,923,784
    15,008        0.5  895,087,191  399,888,743,900
    18,760        0.6  840,062,594  327,287,716,803
    22,512        0.8  806,389,685  282,881,041,331
    26,264        0.9  782,971,706  251,988,446,808
    30,016        1.0  765,293,424  228,664,652,276
    33,768        1.1  751,135,535  210,005,616,650
    37,520        1.3  739,350,016  194,387,820,900
    41,272        1.4  733,533,785  187,299,216,679
    45,024        1.5  732,921,550  187,299,216,679
    48,776        1.6  732,691,962  187,299,216,679
    52,528        1.8  732,538,908  187,299,216,679
    56,280        1.9  732,538,917  187,299,216,679
    60,032        2.0  732,462,391  187,299,458,716
          -------------------------------------------------------------

 

該環節資料來源於WRH$_SGA_TARGET_ADVICE

SGA target Size   : 用以評估的sga target大小 (sga_target)

SGA Size Factor:  SGA Size的比例因子,  (est SGA target Size / Current SGA target Size )

Est DB Time (s): 評估對應於該指定sga target size會產生多少量的DB TIME,單位為秒

Est Physical Reads:評估對應該指定的sga target size 會產生多少的物理讀

 

 

7-9 Streams Pool Advisory  

 

Streams Pool Advisory                     DB/Inst: ITSCMP/itscmp2  Snap: 70723

  Size for      Size   Est Spill   Est Spill Est Unspill Est Unspill
  Est (MB)    Factor       Count    Time (s)       Count    Time (s)
---------- --------- ----------- ----------- ----------- -----------
        64       0.5           0           0           0           0
       128       1.0           0           0           0           0
       192       1.5           0           0           0           0
       256       2.0           0           0           0           0
       320       2.5           0           0           0           0
       384       3.0           0           0           0           0
       448       3.5           0           0           0           0
       512       4.0           0           0           0           0
       576       4.5           0           0           0           0
       640       5.0           0           0           0           0
       704       5.5           0           0           0           0
       768       6.0           0           0           0           0
       832       6.5           0           0           0           0
       896       7.0           0           0           0           0
       960       7.5           0           0           0           0
     1,024       8.0           0           0           0           0
     1,088       8.5           0           0           0           0
     1,152       9.0           0           0           0           0
     1,216       9.5           0           0           0           0
     1,280      10.0           0           0           0           0

 

該環節只有當使用了Streams  流複製時才會有必要資料, 資料來源 WRH$_STREAMS_POOL_ADVICE

 

Size for Est (MB) : 用以評估的 streams pool大小

Size Factor :streams pool大小的比例因子

Est Spill Count  :評估出的 當使用該大小的流池時 message溢位到磁碟的數量 ESTD_SPILL_COUNT

Est Spill Time (s): 評估出的 當使用該大小的流池時 message溢位到磁碟的耗時,單位為秒 ESTD_SPILL_TIME

Est Unspill Count:評估的 當使用該大小的流池時 message unspill 即從磁碟上讀取的數量 ESTD_UNSPILL_COUNT

Est Unspill Time (s) : 評估的 當使用該大小的流池時 message unspill 即從磁碟上讀取的耗時,單位為秒 ESTD_UNSPILL_TIME

 

7-10 Java Pool Advisory 

 

java pool的相關指標與shared pool相似,不再鏖述

 

 

8 Wait Statistics

 

8-1 Buffer Wait Statistics 

 

Buffer Wait Statistics          Snaps: 70719-70723
-> ordered by wait time desc, waits desc

Class                    Waits Total Wait Time (s)  Avg Time (ms)
------------------ ----------- ------------------- --------------
data block           8,442,041             407,259             48
undo header             16,212               1,711            106
undo block              21,023                 557             26
1st level bmb            1,038                 266            256
2nd level bmb              540                 185            342
bitmap block                90                  25            276
segment header             197                  13             66
file header block          132                   6             43
bitmap index block          18                   0              1
extent map                   2                   0              0

資料來源 : WRH$_WAITSTAT

該環節是對 緩衝池中各型別(class) 塊 等待的彙總資訊, wait的原因一般是 buffer busy waits 和 read by other session

class 資料塊的class,  一個oracle資料塊即有class 屬性 還有type 屬性,資料塊中記錄type屬性(KCBH), 而在buffer header裡存有class屬性(X$BH.class)

Waits: 該型別資料塊的等待次數

Total Wait Time  (s) : 該型別資料塊的合計等待時間 單位為秒

Avg Time (ms) : 該型別資料塊 平均每次等待的耗時, 單位 ms

 

如果使用者正使用 undo_management=AUTO 的SMU 則一般不會因為rollback segment過少而引起undo header block類塊的等待

對於INSERT 而引起的 buffer爭用等待:

1、 對於手動segment 管理MSSM 考慮增加Freelists、Freelist Groups

2、 使用ASSM ,當然ASSM本身沒什麼引數可調

 

 

 

對於INSERT ON INDEX 引起的爭用:

 

  • 使用反向索引key
  • 使用HASH分割槽和本地索引
  • 可能的情況下 減少index的density

 

 

8-2 Enqueue Activity 

enqueue 佇列鎖等待

 

Enqueue Activity  Snaps: 70719-70723
-> only enqueues with waits are shown
-> Enqueue stats gathered prior to 10g should not be compared with 10g data
-> ordered by Wait Time desc, Waits desc

Enqueue Type (Request Reason)
------------------------------------------------------------------------------
    Requests    Succ Gets Failed Gets       Waits  Wt Time (s) Av Wt Time(ms)
------------ ------------ ----------- ----------- ------------ --------------
TX-Transaction (index contention)
     201,270      201,326           0     193,948       97,517         502.80
TM-DML
     702,731      702,681           4       1,081       46,671      43,174.08
SQ-Sequence Cache
      28,643       28,632           0      17,418       35,606       2,044.19
HW-Segment High Water Mark
       9,210        8,845         376       1,216       12,505      10,283.85
TX-Transaction (row lock contention)
       9,288        9,280           0       9,232       10,486       1,135.80
CF-Controlfile Transaction
      15,851       14,094       1,756       2,798        4,565       1,631.64
TX-Transaction (allocate ITL entry)
         471          369         102         360          169         469.28

 

Enqueue Type (Request Reason) enqueue 佇列的型別,大家在研究 enqueue 問題前 至少搞清楚enqueue type 和enqueue mode , enqueue type是佇列鎖所要保護的資源 如 TM 表鎖  CF 控制檔案鎖, enqueue mode 是持有佇列鎖的模式 (SS、SX 、S、SSX、X)

 

Requests : 申請對應的enqueue type資源或者佇列轉換(enqueue conversion   例如 S 轉 SSX ) 的次數

Succ Gets :對應的enqueue被成功 申請或轉換的次數

Failed Gets :對應的enqueue的申請 或者轉換失敗的次數

Waits :由對應的enqueue的申請或者轉換而造成等待的次數

Wt Time (s) : 由對應的enqueue的申請或者轉換而造成等待的等待時間

Av Wt Time(ms) :由對應的enqueue的申請或者轉換而造成等待的平均等待時間  , Wt Time (s) / Waits ,單位為ms

 

主要的enqueue 等待事件:

enq: TX – row lock/index contention、allocate ITL等待事件

enq: TM – contention等待事件

Oracle佇列鎖enq:TS,Temporary Segment (also TableSpace)

 

 

 

9-1 Undo Segment Summary  

 

 

Undo Segment Summary            Snaps: 70719-70723
-> Min/Max TR (mins) - Min and Max Tuned Retention (minutes)
-> STO - Snapshot Too Old count,  OOS - Out of Space count
-> Undo segment block stats:
-> uS - unexpired Stolen,   uR - unexpired Released,   uU - unexpired reUsed
-> eS - expired   Stolen,   eR - expired   Released,   eU - expired   reUsed

Undo   Num Undo       Number of  Max Qry   Max Tx Min/Max   STO/     uS/uR/uU/
 TS# Blocks (K)    Transactions  Len (s) Concurcy TR (mins) OOS      eS/eR/eU
---- ---------- --------------- -------- -------- --------- ----- --------------
   4       85.0         200,127   55,448      317 1040.2/10 0/0   0/0/0/0/0/0
          -------------------------------------------------------------

Undo Segment Stats                 Snaps: 70719-70723
-> Most recent 35 Undostat rows, ordered by Time desc

                Num Undo    Number of Max Qry  Max Tx Tun Ret STO/    uS/uR/uU/
End Time          Blocks Transactions Len (s)   Concy  (mins) OOS     eS/eR/eU
------------ ----------- ------------ ------- ------- ------- ----- ------------
29-Aug 05:52      11,700       35,098  55,448     234   1,070 0/0   0/0/0/0/0/0
29-Aug 05:42      12,203       24,677  54,844     284   1,065 0/0   0/0/0/0/0/0
29-Aug 05:32      14,132       37,826  54,241     237   1,060 0/0   0/0/0/0/0/0
29-Aug 05:22      14,379       32,315  53,637     317   1,050 0/0   0/0/0/0/0/0
29-Aug 05:12      15,693       34,157  53,033     299   1,045 0/0   0/0/0/0/0/0
29-Aug 05:02      16,878       36,054  52,428     250   1,040 0/0   0/0/0/0/0/0

 

 

 

資料來源:  WRH$_UNDOSTAT   , undo相關的使用資訊每10分鐘重新整理到v$undostat中

 

Undo Extent有三種狀態  active 、unexpired 、expired

active => extent中 包括了活動的事務 ,active的undo extent 一般不允許被其他事務重用覆蓋

unexpired => extent中沒有活動的事務,但相關undo 記錄從inactive到目前還未經過undo retention(注意 auto undo retention的問題 因為這個特性 可能在觀察dba_undo_extents時看到大部分block都是unexpired,這是正常的)  指定的時間,所以為unexpired。 對於沒有guarantee retention的undo tablespace而言,unexpired extent可能被 steal 為其他事物重用

expired => extent中沒有活動事務,且超過了undo retention的時間

 

Undo TS# 在使用的這個undo 表空間的表空間號, 一個例項 同一時間只能用1個undo tablespace , RAC不同節點可以用不同的undo tablespace

Num Undo Blocks (K)  指被消費的 undo 資料塊的數量, (K)代表要乘以1000才是實際值;  可以用該指標來評估系統對undo block的消費量, 以便基於實際負載情況來評估UNDO表空間的大小

Number of Transactions  指該段時間內該undo表空間上執行過的事務transaction總量

Max Qry Len (s)  該時段內  持續最久的查詢 時間, 單位為秒

Max Tx Concy  該時段內 最大的事務併發量

Min/Max TR (mins)   最小和最大的tuned  undo retention ,單位為分鐘; tuned undo retention 是自動undo調優特性,見undo自動調優介紹。

STO/ OOS     STO 指 ORA-01555 Snapshot Too Old錯誤出現的次數;   OOS – 指Out of Space count 錯誤出現的次數

uS – unexpired Stolen  嘗試從未過期的undo extent中偷取undo space的次數

uR – unexpired Released  從未過期的undo extent中釋放的塊數目

uU – unexpired reUsed   未過期的undo extent中的block被其他事務重用的 塊數目

eS – expired   Stolen    嘗試從過期的undo extent中偷取undo space的次數

eR – expired   Released   從過期的undo extent中釋放的塊數目

eU – expired   reUsed   過期的undo extent中的block被其他事務重用的 塊數目

 

 

UNXPSTEALCNT NUMBER Number of attempts to obtain undo space by stealing unexpired extents from other transactions
UNXPBLKRELCNT NUMBER Number of unexpired blocks removed from certain undo segments so they can be used by other transactions
UNXPBLKREUCNT NUMBER Number of unexpired undo blocks reused by transactions
EXPSTEALCNT NUMBER Number of attempts to steal expired undo blocks from other undo segments
EXPBLKRELCNT NUMBER Number of expired undo blocks stolen from other undo segments
EXPBLKREUCNT NUMBER Number of expired undo blocks reused within the same undo segments
SSOLDERRCNT NUMBER Identifies the number of times the error ORA-01555 occurred. You can use this statistic to decide whether or not the UNDO_RETENTION initialization parameter is set properly given the size of the undo tablespace. Increasing the value of UNDO_RETENTION can reduce the occurrence of this error.

 

 

 10-1 Latch Activity

 

 

Latch Activity        Snaps: 70719-70723
-> "Get Requests", "Pct Get Miss" and "Avg Slps/Miss" are statistics for
   willing-to-wait latch get requests
-> "NoWait Requests", "Pct NoWait Miss" are for no-wait latch get requests
-> "Pct Misses" for both should be very close to 0.0

                                           Pct    Avg   Wait                 Pct
                                    Get    Get   Slps   Time       NoWait NoWait
Latch Name                     Requests   Miss  /Miss    (s)     Requests   Miss
------------------------ -------------- ------ ------ ------ ------------ ------
AQ deq hash table latch               4    0.0             0            0    N/A
ASM Keyed state latch             9,048    0.1    0.2      0            0    N/A
ASM allocation                   15,017    0.2    0.8      1            0    N/A
ASM db client latch              72,745    0.0             0            0    N/A
ASM map headers                   5,860    0.6    0.6      1            0    N/A
ASM map load waiting lis          1,462    0.0             0            0    N/A
ASM map operation freeli         63,539    0.1    0.4      1            0    N/A
ASM map operation hash t     76,484,447    0.1    1.0     66            0    N/A

 

latch name Latch閂的名字

Get Requests      latch被以willing-to-wait模式申請並獲得的次數

Pct Get Miss   miss是指latch被以willing-to-wait 模式申請但是申請者必須等待的次數,  Pct Get Miss = Miss/Get Requests  ; miss可以從後面的Latch Sleep Breakdown 獲得

Avg Slps /Miss    Sleep 是指latch被以willing-to-wait模式申請最終導致session需要sleep以等待該latch的次數  ;   Avg Slps /Miss = Sleeps/ Misses ; Sleeps可以從後面的Latch Sleep Breakdown 獲得

Wait Time (s)  指花費在等待latch上的時間,單位為秒

 

NoWait Requests  指latch被以no-wait模式來申請的次數

Pct NoWait Miss   以no-wait模式來申請latch但直接失敗的次數

對於高併發的latch例如cache buffers chains,其Pct Misses應當十分接近於0

一般的調優原則:

如果latch : cache buffers chains是 Top 5 事件,則需要考慮優化SQL減少 全表掃描 並減少Top buffer gets SQL語句的邏輯讀

如果latch : redo copy 、redo allocation 等待較多,則可以考慮增大LOG_BUFFER

如果latch:library cache 發生較多,則考慮增大shared_pool_size

 

 

10-2 Latch Sleep Breakdown

 

 

Latch Sleep Breakdown             DB/Inst: ITSCMP/itscmp2  Snaps: 70719-70723
-> ordered by misses desc

                                       Get                                 Spin
Latch Name                        Requests       Misses      Sleeps        Gets
-------------------------- --------------- ------------ ----------- -----------
cache buffers chains         3,365,097,866   12,831,875     130,058  12,683,450
row cache objects               69,050,058      349,839       1,320     348,649
session idle bit               389,437,460      268,285       2,768     265,752
enqueue hash chains              8,698,453      239,880      22,476     219,950
ges resource hash list           8,388,730      158,894      70,728      91,104
gc element                     100,383,385      135,759       6,285     129,742
gcs remastering latch           12,213,169       72,373           1      72,371
enqueues                         4,662,545       46,374         259      46,155
ASM map operation hash tab      76,484,447       46,231      45,210       1,952
Lsod array latch                    72,598       24,224      24,577       1,519

 

 

 

latch name Latch閂的名字

Get Requests      latch被以willing-to-wait模式申請並獲得的次數

misses 是指latch被以willing-to-wait 模式申請但是申請者必須等待的次數

9i以後miss之後一般有2種情況 spin gets了 或者sleep一睡不醒直到 被post,具體見全面解析9i以後Oracle Latch閂鎖原理;

8i以前的latch演算法可以參考:Oracle Latch:一段描繪Latch運作的虛擬碼

所以一般來說9i以後的 misses= Sleeps+ Spin Gets ,雖然不是絕對如此

Sleeps 是指latch被以willing-to-wait模式申請最終導致session需要sleep以等待該latch的次數

Spin Gets  以willing-to-wait模式去申請latch,在miss之後以spin方式獲得了latch的次數

 

 

 

10-3 Latch Miss Sources

 

 

Latch Miss Sources           Snaps: 70719-70723
-> only latches with sleeps are shown
-> ordered by name, sleeps desc

                                                     NoWait              Waiter
Latch Name               Where                       Misses     Sleeps   Sleeps
------------------------ -------------------------- ------- ---------- --------
ASM Keyed state latch    kfksolGet                        0          1        1
ASM allocation           kfgpnSetDisks2                   0         17        0
ASM allocation           kfgpnClearDisks                  0          5        0
ASM allocation           kfgscCreate                      0          4        0
ASM allocation           kfgrpGetByName                   0          1       26
ASM map headers          kffmUnidentify_3                 0          7        8
ASM map headers          kffmAllocate                     0          6        0
ASM map headers          kffmIdentify                     0          6       11
ASM map headers          kffmFree                         0          1        0
ASM map operation freeli kffmTranslate2                   0         15        8
ASM map operation hash t kffmUnidentify                   0     44,677   36,784
ASM map operation hash t kffmTranslate                    0        220    3,517

 

資料來源為DBA_HIST_LATCH_MISSES_SUMMARY

 

latch name Latch閂的名字
where  : 指哪些程式碼路徑核心函式持有過這些該latch ,而不是哪些程式碼路徑要申請這些latch;  例如kcbgtcr函式的作用是Get a block for Consistent read,其持有latch :cache buffers chain是很正常的事情

NoWait Misses: 以no-wait模式來申請latch但直接失敗的次數

Sleeps:  指latch被以willing-to-wait模式申請最終導致session需要sleep以等待該latch的次數  time of sleeps resulted in making the latch request

Waiter Sleeps:等待者休眠的次數  times of sleeps that waiters did for each where;   Sleep 是阻塞者等待的次數 , Waiter Sleeps是被阻塞者等待的次數

 

 

10-4 Mutex Sleep Summary

 

Mutex Sleep Summary       Snaps: 70719-70723
-> ordered by number of sleeps desc

                                                                         Wait
Mutex Type            Location                               Sleeps    Time (ms)
--------------------- -------------------------------- ------------ ------------
Cursor Pin            kksfbc [KKSCHLFSP2]                     4,364       14,520
Cursor Pin            kkslce [KKSCHLPIN2]                     2,396        2,498
Library Cache         kglpndl1  95                              903          475
Library Cache         kglpin1   4                               800          458
Library Cache         kglpnal2  91                              799          259
Library Cache         kglget1   1                               553        1,697
Library Cache         kglpnal1  90                              489           88
Library Cache         kgllkdl1  85                              481        1,528
Cursor Pin            kksLockDelete [KKSCHLPIN6]                410          666
Cursor Stat           kkocsStoreBindAwareStats [KKSSTA          346          497
Library Cache         kglhdgn2 106                              167          348
Library Cache         kglhdgh1  64                               26           84
Library Cache         kgldtin1  42                               19           55
Cursor Pin            kksfbc [KKSCHLPIN1]                        13           34
Library Cache         kglhdgn1  62                               11           13
Library Cache         kgllkal1  80                                9           12
Library Cache         kgllkc1   57                                6            0
Cursor Pin            kksSetBindType [KKSCHLPIN3]                 5            5
Library Cache         kglGetHandleReference 124                   4           20
Library Cache         kglUpgradeLock 119                          4            0
Library Cache         kglget2   2                                 3            0
Library Cache         kglati1   45                                1            0
Library Cache         kglini1   32                                1            0
Library Cache         kglobld1  75                                1            0
Library Cache         kglobpn1  71                                1            0

 

 

Mutex是10.2.0.2以後引入的新的記憶體鎖機制,具體對Mutex的描述見 《深入理解Oracle中的Mutex》:http://www.askmaclean.com/archives/understanding-oracle-mutex.html

Mutex Type

Mutex的型別其實就是 mutex對應的客戶的名字,  在版本10.2中基本只有KKS使用Mutex,所以僅有3種:

  • Cursor Stat (kgx_kks1)
  • Cursor Parent (kgx_kks2)
  • Cursor Pin (kgx_kks3)

11g中增加了Library Cache

 

Location  發起對該Mutex申請的程式碼路徑code location,而不是還持有該Mutex的程式碼路徑或曰核心函式

10.2中最常見的下面的幾個函式

kkspsc0  -負責解析遊標 – 檢測我們正在解析的遊標是否有物件的parent cursor heap 0存在

kksfbc           –  負責找到合適的子游標 或者建立一個新的子游標

kksFindCursorstat

 

Sleeps:

Mutex的Get和Sleep

當一個Mutex被申請時, 一般稱為一個get request。 若初始的申請未能得到授權, 則該程式會因為此次申請而進入到255次SPIN中(_mutex_spin_count Mutex spin count),每次SPIN迴圈迭代過程中該程式都會去看看Mutex被釋放了嗎。

若該Mutex在SPIN之後仍未被釋放,則該程式針對申請的mutex進入對應的mutex wait等待事件中。 實際程式的等待事件和等待方式由mutex的型別鎖決定,例如 Cursor pin、Cursor Parent。  舉例來說,這種等待可能是阻塞等待,也可以是sleep。

但是請注意在V$MUTEX_SLEEP_*檢視上的sleep列意味著等待的次數。相關程式碼函式在開始進入等待時自加這個sleep欄位。

等待計時從程式進入等待前開始計算等待時間, 當一個程式結束其等待,則等待的時間加入都總和total中。  該程式再次嘗試申請之前的Mutex,若該Mutex仍不可用,則它再次進入spin/wait的迴圈。

 

V$MUTEX_SLEEP_HISTORY檢視的GETS列僅在成功申請到一個Mutex時才增加。

 

Wait  Time (ms) 類似於latch,spin time 不算做mutex的消耗時間,它只包含等待消耗的時間。

 

=====================================================================
 11  segment statistics 段級統計

 

11-1 Segments by Logical Reads

 

 

Segments by Logical Reads         DB/Inst: MAC/MAC2  Snaps: 70719-70723
-> Total Logical Reads:   2,021,476,421
-> Captured Segments account for   83.7% of Total

           Tablespace                      Subobject  Obj.       Logical
Owner         Name    Object Name            Name     Type         Reads  %Total
---------- ---------- -------------------- ---------- ----- ------------ -------
CONTENT_OW INDEX_TS   MZ_PRODUCT_ATTRIBUTE            INDEX  372,849,920   18.44
CONTENT_OW INDEX_TS   MZ_PRODUCT__LS_PK               INDEX  329,829,632   16.32
CONTENT_OW DATA_TS    MZ_PRODUCT_ATTRIBUTE            TABLE  218,419,008   10.80
CONTENT_OW PLAYLIST_A MZ_PLAYLIST_ARTIST              TABLE  182,426,240    9.02
CONTENT_OW DATA_TS    MZ_PRODUCT                      TABLE  108,597,376    5.37

owner : 資料段的所有者

Tablespace Name: 資料段所在表空間名

Object Name : 物件名

Subobject Name:子物件名,例如一個分割槽表的某個分割槽

obj Type:  物件型別 一般為TABLE /INDEX  或者分割槽或子分割槽

Logical Reads :該資料段上發生過的邏輯讀 , 單位為 塊數*次數

%Total : 佔總的邏輯讀的百分比 ,   (當前物件上發生過的邏輯讀/ Total DB 邏輯讀)

 

 

11-2 Segments by Physical Reads

 

 

Segments by Physical Reads         DB/Inst: MAC/MAC2  Snaps: 70719-70723
-> Total Physical Reads:      56,839,035
-> Captured Segments account for   51.9% of Total

           Tablespace                      Subobject  Obj.      Physical
Owner         Name    Object Name            Name     Type         Reads  %Total
---------- ---------- -------------------- ---------- ----- ------------ -------
CONTENT_OW SONG_TS    MZ_SONG                         TABLE    7,311,928   12.86
CONTENT_OW DATA_TS    MZ_CS_WORK_PENDING_R            TABLE    4,896,554    8.61
CONTENT_OW DATA_TS    MZ_CONTENT_PROVIDER_            TABLE    3,099,387    5.45
CONTENT_OW DATA_TS    MZ_PRODUCT_ATTRIBUTE            TABLE    1,529,971    2.69
CONTENT_OW DATA_TS    MZ_PUBLICATION                  TABLE    1,391,735    2.45

 

Physical Reads: 該資料段上發生過的物理讀 , 單位為 塊數*次數

%Total : 佔總的物理讀的百分比 ,   (當前物件上發生過的邏輯讀/ Total DB 邏輯讀)

 

 

11-3  Segments by Physical Read Requests

 

 

Segments by Physical Read Requests DB/Inst: MAC/MAC2  Snaps: 70719-70723
-> Total Physical Read Requests:      33,936,360
-> Captured Segments account for   45.5% of Total

           Tablespace                      Subobject  Obj.     Phys Read
Owner         Name    Object Name            Name     Type      Requests  %Total
---------- ---------- -------------------- ---------- ----- ------------ -------
CONTENT_OW DATA_TS    MZ_CONTENT_PROVIDER_            TABLE    3,099,346    9.13
CONTENT_OW DATA_TS    MZ_PRODUCT_ATTRIBUTE            TABLE    1,529,950    4.51
CONTENT_OW DATA_TS    MZ_PRODUCT                      TABLE    1,306,756    3.85
CONTENT_OW DATA_TS    MZ_AUDIO_FILE                   TABLE      910,537    2.68
CONTENT_OW INDEX_TS   MZ_PRODUCT_ATTRIBUTE            INDEX      820,459    2.42

 

 

Phys Read Requests : 物理讀的申請次數

%Total  : (該段上發生的物理讀的申請次數/ physical read IO requests)

 

 

11-4  Segments by UnOptimized Reads

 

 

Segments by UnOptimized Reads      DB/Inst: MAC/MAC2  Snaps: 70719-70723
-> Total UnOptimized Read Requests:         811,466
-> Captured Segments account for   58.5% of Total

           Tablespace                      Subobject  Obj.   UnOptimized
Owner         Name    Object Name            Name     Type         Reads  %Total
---------- ---------- -------------------- ---------- ----- ------------ -------
CONTENT_OW DATA_TS    MZ_CONTENT_PROVIDER_            TABLE      103,580   12.76
CONTENT_OW SONG_TS    MZ_SONG                         TABLE       56,946    7.02
CONTENT_OW DATA_TS    MZ_IMAGE                        TABLE       47,017    5.79
CONTENT_OW DATA_TS    MZ_PRODUCT_ATTRIBUTE            TABLE       40,950    5.05
CONTENT_OW DATA_TS    MZ_PRODUCT                      TABLE       30,406    3.75

 

UnOptimized Reads UnOptimized Read Reqs = Physical Read Reqts – Optimized Read Reqs

 

Optimized Read Requests是指 哪些滿足Exadata Smart Flash Cache ( or the Smart Flash Cache in OracleExadata V2 (Note that despite same name, concept and use of
‘Smart Flash Cache’ in Exadata V2 is different from ‘Smart Flash Cache’ in Database Smart Flash Cache)).的物理讀 次數 。  滿足從smart flash cache走的讀取申請唄認為是optimized ,因為這些讀取要比普通從磁碟走快得多。

此外通過smart scan 讀取storage index的情況也被認為是’optimized read requests’ ,源於可以避免讀取不相關的資料。

當使用者不在使用Exadata時,則UnOptimized Read Reqs總是等於 Physical Read Reqts

%Total : (該段上發生的物理讀的UnOptimized Read Reqs / ( physical read IO requests – physical read requests optimized   ))
11-5 Segments by Optimized Reads

 

 

 

Segments by Optimized Reads        DB/Inst: MAC/MAC2  Snaps: 70719-70723
-> Total Optimized Read Requests:      33,124,894
-> Captured Segments account for   45.2% of Total

           Tablespace                      Subobject  Obj.     Optimized
Owner         Name    Object Name            Name     Type         Reads  %Total
---------- ---------- -------------------- ---------- ----- ------------ -------
CONTENT_OW DATA_TS    MZ_CONTENT_PROVIDER_            TABLE    2,995,766    9.04
CONTENT_OW DATA_TS    MZ_PRODUCT_ATTRIBUTE            TABLE    1,489,000    4.50
CONTENT_OW DATA_TS    MZ_PRODUCT                      TABLE    1,276,350    3.85
CONTENT_OW DATA_TS    MZ_AUDIO_FILE                   TABLE      890,775    2.69
CONTENT_OW INDEX_TS   MZ_AM_REQUEST_IX3               INDEX      816,067    2.46

 

關於optimizerd read 上面已經解釋過了,這裡的單位是 request 次數

%Total :  (該段上發生的物理讀的 Optimized Read Reqs/ physical read requests optimized )

 

 

 

11-6 Segments by Direct Physical Reads

 

Segments by Direct Physical Reads  DB/Inst: MAC/MAC2  Snaps: 70719-70723
-> Total Direct Physical Reads:      14,118,552
-> Captured Segments account for   94.2% of Total

           Tablespace                      Subobject  Obj.        Direct
Owner         Name    Object Name            Name     Type         Reads  %Total
---------- ---------- -------------------- ---------- ----- ------------ -------
CONTENT_OW SONG_TS    MZ_SONG                         TABLE    7,084,416   50.18
CONTENT_OW DATA_TS    MZ_CS_WORK_PENDING_R            TABLE    4,839,984   34.28
CONTENT_OW DATA_TS    MZ_PUBLICATION                  TABLE    1,361,133    9.64
CONTENT_OW DATA_TS    SYS_LOB0000203660C00            LOB          5,904     .04
CONTENT_OW DATA_TS    SYS_LOB0000203733C00            LOB          1,656     .01

 

 

Direct reads 直接路徑物理讀,單位為 塊數*次數
%Total  (該段上發生的direct path reads /Total  physical reads direct )

 

 

11-7  Segments by Physical Writes

Segments by Physical Writes        DB/Inst: MAC/MAC2  Snaps: 70719-70723
-> Total Physical Writes:         590,563
-> Captured Segments account for   38.3% of Total

           Tablespace                      Subobject  Obj.      Physical
Owner         Name    Object Name            Name     Type        Writes  %Total
---------- ---------- -------------------- ---------- ----- ------------ -------
CONTENT_OW DATA_TS    MZ_CS_WORK_PENDING_R            TABLE       23,595    4.00
CONTENT_OW DATA_TS    MZ_PODCAST                      TABLE       19,834    3.36
CONTENT_OW INDEX_TS   MZ_IMAGE_IX2                    INDEX       16,345    2.77
SYS        SYSAUX     WRH$_ACTIVE_SESSION_ 1367_70520 TABLE       14,173    2.40
CONTENT_OW INDEX_TS   MZ_AM_REQUEST_IX3               INDEX        9,645    1.63

Physical Writes ,物理寫 單位為 塊數*次數

Total % (該段上發生的物理寫 /Total physical writes )

 

 

 

11-9 Segments by Physical Write Requests

 

Segments by Physical Write Requests   DB/Inst: MAC/MAC2  Snaps: 70719-70723
-> Total Physical Write Requestss:         436,789
-> Captured Segments account for   43.1% of Total

           Tablespace                      Subobject  Obj.    Phys Write
Owner         Name    Object Name            Name     Type      Requests  %Total
---------- ---------- -------------------- ---------- ----- ------------ -------
CONTENT_OW DATA_TS    MZ_CS_WORK_PENDING_R            TABLE       22,581    5.17
CONTENT_OW DATA_TS    MZ_PODCAST                      TABLE       19,797    4.53
CONTENT_OW INDEX_TS   MZ_IMAGE_IX2                    INDEX       14,529    3.33
CONTENT_OW INDEX_TS   MZ_AM_REQUEST_IX3               INDEX        9,434    2.16
CONTENT_OW DATA_TS    MZ_AM_REQUEST                   TABLE        8,618    1.97

 

Phys Write Requests 物理寫的請求次數 ,單位為次數

%Total (該段上發生的物理寫請求次數 /physical write IO requests )

 

 

11-10 Segments by Direct Physical Writes

 

 

Segments by Direct Physical Writes DB/Inst: MAC/MAC2  Snaps: 70719-70723
-> Total Direct Physical Writes:          29,660
-> Captured Segments account for   18.3% of Total

           Tablespace                      Subobject  Obj.        Direct
Owner         Name    Object Name            Name     Type        Writes  %Total
---------- ---------- -------------------- ---------- ----- ------------ -------
SYS        SYSAUX     WRH$_ACTIVE_SESSION_ 1367_70520 TABLE        4,601   15.51
CONTENT_OW DATA_TS    SYS_LOB0000203733C00            LOB            620    2.09
CONTENT_OW DATA_TS    SYS_LOB0000203660C00            LOB            134     .45
CONTENT_OW DATA_TS    SYS_LOB0000203779C00            LOB             46     .16
CONTENT_OW DATA_TS    SYS_LOB0000203796C00            LOB             41     .14

 

 

Direct Writes 直接路徑寫, 單位額為塊數*次數
%Total 為(該段上發生的直接路徑寫 /physical writes direct )

 

 

 

11-11   Segments by Table Scans

 

 

Segments by Table Scans            DB/Inst: MAC/MAC2  Snaps: 70719-70723
-> Total Table Scans:          10,713
-> Captured Segments account for    1.0% of Total

           Tablespace                      Subobject  Obj.         Table
Owner         Name    Object Name            Name     Type         Scans  %Total
---------- ---------- -------------------- ---------- ----- ------------ -------
CONTENT_OW DATA_TS    MZ_PUBLICATION                  TABLE           92     .86
CONTENT_OW DATA_TS    MZ_CS_WORK_PENDING_R            TABLE           14     .13
CONTENT_OW SONG_TS    MZ_SONG                         TABLE            3     .03
CONTENT_OW DATA_TS    MZ_AM_REQUEST                   TABLE            1     .01

 

 

Table Scans 來源為dba_hist_seg_stat.table_scans_delta 不過這個指標並不十分精確

 

11-12 Segments by DB Blocks Changes

 

 

 

Segments by DB Blocks Changes      DB/Inst: MAC/MAC2  Snaps: 70719-70723
-> % of Capture shows % of DB Block Changes for each top segment compared
-> with total DB Block Changes for all segments captured by the Snapshot

           Tablespace                      Subobject  Obj.      DB Block    % of
Owner         Name    Object Name            Name     Type       Changes Capture
---------- ---------- -------------------- ---------- ----- ------------ -------
CONTENT_OW INDEX_TS   MZ_AM_REQUEST_IX8               INDEX      347,856   10.21
CONTENT_OW INDEX_TS   MZ_AM_REQUEST_IX3A              INDEX      269,504    7.91
CONTENT_OW INDEX_TS   MZ_AM_REQUEST_PK                INDEX      251,904    7.39
CONTENT_OW DATA_TS    MZ_AM_REQUEST                   TABLE      201,056    5.90
CONTENT_OW INDEX_TS   MZ_PRODUCT_ATTRIBUTE            INDEX      199,888    5.86

DB Block Changes ,單位為塊數*次數

%Total : (該段上發生block changes  /  db block changes )

 

 

 

11-13  Segments by Row Lock Waits 

 

 

Segments by Row Lock Waits        DB/Inst: MAC/MAC2  Snaps: 70719-70723
-> % of Capture shows % of row lock waits for each top segment compared
-> with total row lock waits for all segments captured by the Snapshot

                                                                     Row
           Tablespace                      Subobject  Obj.          Lock    % of
Owner         Name    Object Name            Name     Type         Waits Capture
---------- ---------- -------------------- ---------- ----- ------------ -------
CONTENT_OW LOB_8K_TS  MZ_ASSET_WORK_EVENT_            INDEX       72,005   43.86
CONTENT_OW LOB_8K_TS  MZ_CS_WORK_NOTE_RE_I _2013_1_36 INDEX       13,795    8.40
CONTENT_OW LOB_8K_TS  MZ_CS_WORK_INFO_PART _2013_5_35 INDEX       12,383    7.54
CONTENT_OW INDEX_TS   MZ_AM_REQUEST_IX3A              INDEX        8,937    5.44
CONTENT_OW DATA_TS    MZ_AM_REQUEST                   TABLE        8,531    5.20

 

 

Row  Lock Waits 是指行鎖的等待次數   資料來源於 dba_hist_seg_stat.ROW_LOCK_WAITS_DELTA

 

 

11-14   Segments by ITL WAITS

 

Segments by ITL Waits              DB/Inst: MAC/MAC2  Snaps: 70719-70723
-> % of Capture shows % of ITL waits for each top segment compared
-> with total ITL waits for all segments captured by the Snapshot

           Tablespace                      Subobject  Obj.           ITL    % of
Owner         Name    Object Name            Name     Type         Waits Capture
---------- ---------- -------------------- ---------- ----- ------------ -------
CONTENT_OW LOB_8K_TS  MZ_ASSET_WORK_EVENT_            INDEX           95   30.16
CONTENT_OW LOB_8K_TS  MZ_CS_WORK_NOTE_RE_I _2013_1_36 INDEX           48   15.24
CONTENT_OW LOB_8K_TS  MZ_CS_WORK_INFO_PART _2013_5_35 INDEX           21    6.67
CONTENT_OW INDEX_TS   MZ_SALABLE_FIRST_AVA            INDEX           21    6.67
CONTENT_OW DATA_TS    MZ_CS_WORK_PENDING_R            TABLE           20    6.35

 

關於 ITL的介紹詳見: http://www.askmaclean.com/archives/enqueue-tx-row-lock-index-itl-wait-event.html

ITL Waits 等待 ITL 的次數,資料來源為 dba_hist_seg_stat.itl_waits_delta

 

 

11-14   Segments by Buffer Busy Waits

 

Segments by Buffer Busy Waits      DB/Inst: MAC/MAC2  Snaps: 70719-70723
-> % of Capture shows % of Buffer Busy Waits for each top segment compared
-> with total Buffer Busy Waits for all segments captured by the Snapshot

                                                                  Buffer
           Tablespace                      Subobject  Obj.          Busy    % of
Owner         Name    Object Name            Name     Type         Waits Capture
---------- ---------- -------------------- ---------- ----- ------------ -------
CONTENT_OW LOB_8K_TS  MZ_ASSET_WORK_EVENT_            INDEX      251,073   57.07
CONTENT_OW LOB_8K_TS  MZ_CS_WORK_NOTE_RE_I _2013_1_36 INDEX       36,186    8.23
CONTENT_OW LOB_8K_TS  MZ_CS_WORK_INFO_PART _2013_5_35 INDEX       31,786    7.23
CONTENT_OW INDEX_TS   MZ_AM_REQUEST_IX3A              INDEX       15,663    3.56
CONTENT_OW INDEX_TS   MZ_CS_WORK_PENDING_R            INDEX       11,087    2.52

 

Buffer Busy Waits  該資料段上發生 buffer busy wait的次數   資料來源 dba_hist_seg_stat.buffer_busy_waits_delta

 

 

 

11-15   Segments by Global Cache Buffer

 

 

Segments by Global Cache Buffer BusyDB/Inst: MAC/MAC2  Snaps: 70719-7072
-> % of Capture shows % of GC Buffer Busy for each top segment compared
-> with GC Buffer Busy for all segments captured by the Snapshot

                                                                      GC
           Tablespace                      Subobject  Obj.        Buffer    % of
Owner         Name    Object Name            Name     Type          Busy Capture
---------- ---------- -------------------- ---------- ----- ------------ -------
CONTENT_OW INDEX_TS   MZ_AM_REQUEST_IX3               INDEX    2,135,528   50.07
CONTENT_OW DATA_TS    MZ_CONTENT_PROVIDER_            TABLE      652,900   15.31
CONTENT_OW LOB_8K_TS  MZ_ASSET_WORK_EVENT_            INDEX      552,161   12.95
CONTENT_OW LOB_8K_TS  MZ_CS_WORK_NOTE_RE_I _2013_1_36 INDEX      113,042    2.65
CONTENT_OW LOB_8K_TS  MZ_CS_WORK_INFO_PART _2013_5_35 INDEX       98,134    2.30

 

 

GC Buffer Busy 資料段上發揮僧gc buffer busy的次數, 資料來源 dba_hist_seg_stat.gc_buffer_busy_delta

 

 

11-15   Segments by CR Blocks Received

 

 

Segments by CR Blocks Received    DB/Inst: MAC/MAC2  Snaps: 70719-70723
-> Total CR Blocks Received:         763,037
-> Captured Segments account for   40.9% of Total

                                                                   CR
           Tablespace                      Subobject  Obj.       Blocks
Owner         Name    Object Name            Name     Type      Received  %Total
---------- ---------- -------------------- ---------- ----- ------------ -------
CONTENT_OW DATA_TS    MZ_AM_REQUEST                   TABLE       69,100    9.06
CONTENT_OW DATA_TS    MZ_CS_WORK_PENDING_R            TABLE       44,491    5.83
CONTENT_OW INDEX_TS   MZ_AM_REQUEST_IX3A              INDEX       36,830    4.83
CONTENT_OW DATA_TS    MZ_PODCAST                      TABLE       36,632    4.80
CONTENT_OW INDEX_TS   MZ_AM_REQUEST_PK                INDEX       19,646    2.57

 

 

CR  Blocks Received :是指RAC中本地節點接收到global cache CR blocks 的數量; 資料來源為  dba_hist_seg_stat.gc_cu_blocks_received_delta

%Total :   (該段上在本節點接收的Global CR blocks  / gc cr blocks received )

 

 

 

 

11-16     Segments by Current Blocks Received

 

 

 

Segments by Current Blocks ReceivedDB/Inst: MAC/MAC2  Snaps: 70719-70723
-> Total Current Blocks Received:         704,731
-> Captured Segments account for   61.8% of Total

                                                                 Current
           Tablespace                      Subobject  Obj.       Blocks
Owner         Name    Object Name            Name     Type      Received  %Total
---------- ---------- -------------------- ---------- ----- ------------ -------
CONTENT_OW INDEX_TS   MZ_AM_REQUEST_IX3               INDEX       56,287    7.99
CONTENT_OW INDEX_TS   MZ_AM_REQUEST_IX3A              INDEX       45,139    6.41
CONTENT_OW DATA_TS    MZ_AM_REQUEST                   TABLE       40,350    5.73
CONTENT_OW DATA_TS    MZ_CS_WORK_PENDING_R            TABLE       22,808    3.24
CONTENT_OW INDEX_TS   MZ_AM_REQUEST_IX8               INDEX       13,343    1.89

 

 

Current  Blocks Received :是指RAC中本地節點接收到global cache Current blocks 的數量 ,資料來源DBA_HIST_SEG_STAT.gc_cu_blocks_received_delta

%Total :   (該段上在本節點接收的 global cache current blocks / gc current blocks received)

 

 

 

12 Dictionary Cache Stats 

 

Dictionary Cache Stats            DB/Inst: MAC/MAC2  Snaps: 70719-70723
-> "Pct Misses"  should be very low (< 2% in most cases) -> "Final Usage" is the number of cache entries being used

                                   Get    Pct    Scan   Pct      Mod      Final
Cache                         Requests   Miss    Reqs  Miss     Reqs      Usage
------------------------- ------------ ------ ------- ----- -------- ----------
dc_awr_control                      87    2.3       0   N/A        6          1
dc_global_oids                   1,134    7.8       0   N/A        0         13
dc_histogram_data            6,119,027    0.9       0   N/A        0     11,784
dc_histogram_defs            1,898,714    2.3       0   N/A        0      5,462
dc_object_grants                   175   26.9       0   N/A        0          4
dc_objects                  10,254,514    0.2       0   N/A        0      3,807
dc_profiles                      8,452    0.0       0   N/A        0          2
dc_rollback_segments         3,031,044    0.0       0   N/A        0      1,947
dc_segments                  1,812,243    1.4       0   N/A       10      3,595
dc_sequences                    15,783   69.6       0   N/A   15,782         20
dc_table_scns                       70    2.9       0   N/A        0          1
dc_tablespaces               1,628,112    0.0       0   N/A        0         37
dc_users                     2,037,138    0.0       0   N/A        0         52
global database name             7,698    0.0       0   N/A        0          1
outstanding_alerts                 264   99.6       0   N/A        8          1
sch_lj_oids                         51    7.8       0   N/A        0          1

 

 

Dictionary Cache 字典快取也叫row cache

資料來源為dba_hist_rowcache_summary

 

Cache  字典快取類名kqrstcid <=> kqrsttxt  cid=3(dc_rollback_segments)

Get Requests  申請獲取該資料字典快取物件的次數     gets

Miss : GETMISSES 申請獲取該資料字典快取物件但 miss的次數

Pct Miss   : GETMISSES /Gets , Miss的比例 ,這個pct miss應當非常低 小於2%,否則有出現大量row cache lock的可能

Scan Reqs:掃描申請的次數 ,kqrssc 、kqrpScan 、kqrpsiv時發生scan 會導致掃描數增加 kqrstsrq++(scan requests) ,例如migrate tablespace 時呼叫 kttm2b函式 為了安全刪除uet$中的記錄會callback kqrpsiv (used extent cache),實際很少見

 

Pct Miss:SCANMISSES/SCANS

Mod Reqs:  申請修改字典快取物件的次數,從上面的資料可以看到dc_sequences的mod reqs很高,這是因為sequence是變化較多的字典物件

Final Usage  :包含有有效資料的字典快取記錄的總數   也就是正在被使用的row cache記錄 USAGE  Number of cache entries that contain valid data

 

 

Dictionary Cache Stats (RAC)       DB/Inst: MAC/MAC2  Snaps: 70719-70723

                                   GES          GES          GES
Cache                         Requests    Conflicts     Releases
------------------------- ------------ ------------ ------------
dc_awr_control                      14            2            0
dc_global_oids                      88            0          102
dc_histogram_defs               43,518            0       43,521
dc_objects                      21,608           17       21,176
dc_profiles                          1            0            1
dc_segments                     24,974           14       24,428
dc_sequences                    25,178       10,644          347
dc_table_scns                        2            0            2
dc_tablespaces                     165            0          166
dc_users                           119            0          119
outstanding_alerts                 478            8          250
sch_lj_oids                          4            0            4

 

 

 

GES Request kqrstilr  total instance lock requests ,通過全域性佇列服務GES 來申請instance lock的次數

GES request 申請的原因可能是 dump cache object、kqrbfr LCK程式要background free some parent objects釋放一些parent objects 等

 

GES Conflicts kqrstifr instance lock forced-releases     , LCK程式以AST方式 釋放鎖的次數 ,僅出現在kqrbrl中

GES Releases  kqrstisr  instance lock self-releases ,LCK程式要background free some parent objects釋放一些parent objects 時可能自增

 

上述資料中可以看到僅有dc_sequences  對應的GES Conflicts較多, 對於sequence  使用ordered和non-cache選項會導致RAC中的一個邊際效應,即”row cache lock”等待源於DC_SEQUENCES ROW CACHE。 DC_SEQUENCES 上的GETS request、modifications 、GES requests和GES conflict 與引發生成一個新的 sequence number的特定SQL執行頻率相關。

在Oracle 10g中,ORDERED Sequence還可能在高併發下造成大量DFS lock Handle 等待,由於bug 5209859

 

 

 

13   Library Cache Activity

 

Library Cache Activity             DB/Inst: MAC/MAC2  Snaps: 70719-70723
-> "Pct Misses"  should be very low

                         Get    Pct            Pin    Pct             Invali-
Namespace           Requests   Miss       Requests   Miss    Reloads  dations
--------------- ------------ ------ -------------- ------ ---------- --------
ACCOUNT_STATUS         8,436    0.3              0    N/A          0        0
BODY                   8,697    0.7         15,537    0.7         49        0
CLUSTER                  317    4.7            321    4.7          0        0
DBLINK                 9,212    0.1              0    N/A          0        0
EDITION                4,431    0.0          8,660    0.0          0        0
HINTSET OBJECT         1,027    9.5          1,027   14.4          0        0
INDEX                    792   18.2            792   18.2          0        0
QUEUE                     10    0.0          1,733    0.0          0        0
RULESET                    0    N/A              8   87.5          7        0
SCHEMA                 8,169    0.0              0    N/A          0        0
SQL AREA             533,409    4.8 -4,246,727,944  101.1     44,864      576
SQL AREA BUILD        71,500   65.5              0    N/A          0        0
SQL AREA STATS        41,008   90.3         41,008   90.3          1        0
TABLE/PROCEDURE      320,310    0.6      1,033,991    3.6     25,378        0
TRIGGER                  847    0.0         38,442    0.3        110        0

 

NameSpace   library cache 的名稱空間

GETS  Requests  該名稱空間所包含物件的library cache lock被申請的次數

GETHITS  物件的 library cache handle 正好在記憶體中被找到的次數

Pct Misses : ( 1-  ( GETHITS /GETS  Requests)) *100

Pin Requests   該名稱空間所包含物件上pin被申請的次數

PINHITS           要pin的物件的heap metadata正好在shared pool中的次數

Pct Miss   ( 1-  ( PINHITS  /Pin Requests)) *100

Reloads  指從object handle 被重建開始不是第一次PIN該物件的PIN ,且該次PIN要求物件從磁碟上讀取載入的次數 ;Reloads值較高的情況 建議增大shared_pool_size

INVALIDATIONS   由於以來物件被修改導致該名稱空間所包含物件被標記為無效的次數

 

 

Library Cache Activity (RAC)       DB/Inst: MAC/MAC2  Snaps: 70719-70723

                    GES Lock      GES Pin      GES Pin   GES Inval GES Invali-
Namespace           Requests     Requests     Releases    Requests     dations
--------------- ------------ ------------ ------------ ----------- -----------
ACCOUNT_STATUS         8,436            0            0           0           0
BODY                       0       15,497       15,497           0           0
CLUSTER                  321          321          321           0           0
DBLINK                 9,212            0            0           0           0
EDITION                4,431        4,431        4,431           0           0
HINTSET OBJECT         1,027        1,027        1,027           0           0
INDEX                    792          792          792           0           0
QUEUE                      8        1,733        1,733           0           0
RULESET                    0            8            8           0           0
SCHEMA                 4,226            0            0           0           0
TABLE/PROCEDURE      373,163      704,816      704,816           0           0
TRIGGER                    0       38,430       38,430           0           0

 

GES Lock Request: dlm_lock_requests   Lock instance-lock ReQuests      申請獲得lock instance lock的次數

GES PIN request : DLM_PIN_REQUESTS Pin instance-lock ReQuests   申請獲得pin instance lock的次數

GES Pin Releases DLM_PIN_RELEASES release the pin instance lock     釋放pin instance lock的次數

GES Inval Requests    DLM_INVALIDATION_REQUESTS  get the invalidation instance lock   申請獲得invalidation instance lock的次數

GES Invali- dations    DLM_INVALIDATIONS    接收到其他節點的invalidation pings次數

 

 

 

 14 Process Memory Summary

 

 

Process Memory Summary            DB/Inst: MAC/MAC2  Snaps: 70719-70723
-> B: Begin Snap   E: End Snap
-> All rows below contain absolute values (i.e. not diffed over the interval)
-> Max Alloc is Maximum PGA Allocation size at snapshot time
-> Hist Max Alloc is the Historical Max Allocation for still-connected processes
-> ordered by Begin/End snapshot, Alloc (MB) desc

                                                            Hist
                                    Avg  Std Dev     Max     Max
               Alloc      Used    Alloc    Alloc   Alloc   Alloc    Num    Num
  Category      (MB)      (MB)     (MB)     (MB)    (MB)    (MB)   Proc  Alloc
- -------- --------- --------- -------- -------- ------- ------- ------ ------
B Other     16,062.7       N/A      6.1     66.6   3,370   3,370  2,612  2,612
  SQL        5,412.2   4,462.9      2.2     89.5   4,483   4,483  2,508  2,498
  Freeable   2,116.4        .0       .9      6.3     298     N/A  2,266  2,266
  PL/SQL        94.0      69.8       .0       .0       1       1  2,610  2,609
E Other     15,977.3       N/A      6.1     66.9   3,387   3,387  2,616  2,616
  SQL        5,447.9   4,519.0      2.2     89.8   4,505   4,505  2,514  2,503
  Freeable   2,119.9        .0       .9      6.3     297     N/A  2,273  2,273
  PL/SQL        93.2      69.2       .0       .0       1       1  2,614  2,613

 

 

資料來源為dba_hist_process_mem_summary, 這裡是對PGA 使用的一個小結,幫助我們瞭解到底誰用掉了PGA

 

B: 開始快照     E:  結束快照

該環節列出 PGA中各分類的使用量

Category   分類名,包括”SQL”, “PL/SQL”, “OLAP” 和”JAVA”. 特殊分類是 “Freeable” 和”Other”.    Free memory是指哪些 OS已經分配給程式,但沒有分配給任何分類的記憶體。 “Other”是已經分配給分類的記憶體,但不是已命名的分類

Alloc (MB)  allocated_total  該分類被分配的總記憶體

Used (MB)  used_total  該分類已使用的記憶體

Avg  Alloc (MB) allocated_avg     平均每個程式中該分類分配的記憶體量

Std Dev Alloc (MB) :該分類分配的記憶體在每個程式之間的標準差

Max Alloc (MB) ALLOCATED_MAX :在快照時間內單個程式該分類最大分配過的記憶體量:Max Alloc is Maximum PGA Allocation size at snapshot time

Hist Max Alloc (MB) MAX_ALLOCATED_MAX: 目前仍連結著的程式該分類最大分配過的記憶體量:Hist Max Alloc is the Historical Max Allocation for still-connected processes

Num Proc num_processes   程式數目

Num Alloc NON_ZERO_ALLOCS  分配了該型別 記憶體的程式數目

 

 

 

 14 SGA資訊

 

14 -1 SGA Memory Summary  

 

SGA Memory Summary                 DB/Inst: MAC/MAC2  Snaps: 70719-70723

                                                      End Size (Bytes)
SGA regions                     Begin Size (Bytes)      (if different)
------------------------------ ------------------- -------------------
Database Buffers                    20,669,530,112
Fixed Size                               2,241,880
Redo Buffers                           125,669,376
Variable Size                       10,536,094,376
                               -------------------
sum                                 31,333,535,744

 

 

粗粒度的sga區域記憶體使用資訊, End Size僅在於begin size不同時列印

 

 

 

14-2 SGA breakdown difference

 

 

SGA breakdown difference           DB/Inst: MAC/MAC2  Snaps: 70719-70723
-> ordered by Pool, Name
-> N/A value for Begin MB or End MB indicates the size of that Pool/Name was
   insignificant, or zero in that snapshot

Pool   Name                                 Begin MB         End MB  % Diff
------ ------------------------------ -------------- -------------- -------
java   free memory                              64.0           64.0    0.00
large  PX msg pool                               7.8            7.8    0.00
large  free memory                             247.8          247.8    0.00
shared Checkpoint queue                        140.6          140.6    0.00
shared FileOpenBlock                         2,459.2        2,459.2    0.00
shared KGH: NO ACCESS                        1,629.6        1,629.6    0.00
shared KGLH0                                   997.7          990.5   -0.71
shared KKSSP                                   312.2          308.9   -1.06
shared SQLA                                    376.6          370.6   -1.61
shared db_block_hash_buckets                   178.0          178.0    0.00
shared dbktb: trace buffer                     156.3          156.3    0.00
shared event statistics per sess               187.1          187.1    0.00
shared free memory                           1,208.9        1,220.6    0.97
shared gcs resources                           435.0          435.0    0.00
shared gcs shadows                             320.6          320.6    0.00
shared ges enqueues                            228.9          228.9    0.00
shared ges resource                            118.3          118.3    0.00
shared init_heap_kfsg                        1,063.6        1,068.1    0.43
shared kglsim object batch                     124.3          124.3    0.00
shared ksunfy : SSO free list                  174.7          174.7    0.00
stream free memory                             128.0          128.0    0.00
       buffer_cache                         19,712.0       19,712.0    0.00
       fixed_sga                                 2.1            2.1    0.00
       log_buffer                              119.8          119.8    0.00
          -------------------------------------------------------------

 

Pool  記憶體池的名字

Name  記憶體池中細分元件的名字  例如KGLH0 存放KEL Heap 0 、SQLA存放SQL執行計劃等

Begin MB 快照開始時該元件的記憶體大小

End MB  快照結束時該元件的記憶體大小

% Diff 差異百分比

特別注意 由於AMM /ASMM引起的shared pool收縮 一般在sga breakdown中可以提現 例如SQLA 、KQR等元件大幅縮小 ,可能導致一系列的解析等待 cursor: Pin S on X 、row cache lock等

此處的free memory資訊也值得我們關注, 一般推薦shared pool應當有300~400  MB 的free memory為宜

 

 

 

 15 Streams統計

 

 

Streams CPU/IO Usage                      DB/Inst: ORCL/orcl1  Snaps: 556-559
-> Streams processes ordered by CPU usage
-> CPU and I/O Time in micro seconds

Session Type                    CPU Time  User I/O Time   Sys I/O Time
------------------------- -------------- -------------- --------------
QMON Coordinator                 101,698              0              0
QMON Slaves                       63,856              0              0
          -------------------------------------------------------------

Streams Capture                           DB/Inst: CATGT/catgt  Snaps: 911-912 
-> Lag Change should be small or negative (in seconds)

                         Captured Enqueued      Pct            Pct        Pct       Pct
                         Per        Per         Lag RuleEval  Enqueue     RedoWait  Pause
Capture Name   Second    Second     Change      Time           Time       Time      Time 
------------ -------- -------- -------- -------- -------- -------- -------- 
CAPTURE_CAT       650          391       93             0          23         0          71   
------------------------------------------------------------- 

Streams Apply                             DB/Inst: CATGT/catgt  Snaps: 911-912 
-> Pct DB is the percentage of all DB transactions that this apply handled 
-> WDEP is the wait for dependency 
-> WCMT is the wait for commit 
-> RBK is rollbacks -> MPS is messages per second 
-> TPM is time per message in milli-seconds 
-> Lag Change should be small or negative (in seconds)

                    Applied  Pct  Pct   Pct  Pct  Applied  Dequeue     Apply        Lag 
Apply Name           TPS   DB  WDEP WCMT RBK        MPS      TPM          TPM    Change 
------------ -------- ---- ---- ---- --- -------- -------- -------- -------- 
APPLY_CAT           0         0     0     0     0        0            0            0          0
           -------------------------------------------------------------

 

 

 

Capture Name : Streams捕獲程式名

Captured Per Second :每秒挖掘出來的message 條數

Enqueued Per Second:  每秒入隊的message條數

lag change:  指日誌生成的時間到挖掘到該日誌生成 message的時間延遲

Pct Enqueue Time: 入隊時間的比例

Pct redoWait  Time :  等待redo的時間比例

Pct Pause Time : Pause 時間的比例

 

Apply Name  Streams 應用Apply程式的名字

Applied TPS : 每秒應用的事務數

Pct DB:  所有的DB事務中 apply處理的比例

Pct WDEP: 由於等待依賴的資料而耗費的時間比例

Pct WCMT: 由於等待commit而耗費的時間比例

Pct RBK:  事務rollback 回滾的比例

Applied MPS: 每秒應用的message 數

Dequeue TPM: 每毫秒出隊的message數

Lag Change:指最新message生成的時間到其被Apply收到的延遲

 

 

16 Resource Limit

 

Resource Limit Stats                     DB/Inst: MAC/MAC2  Snap: 70723
-> only rows with Current or Maximum Utilization > 80% of Limit are shown
-> ordered by resource name

                                  Current      Maximum     Initial
Resource Name                   Utilization  Utilization Allocation   Limit
------------------------------ ------------ ------------ ---------- ----------
ges_procs                             2,612        8,007      10003      10003
processes                             2,615        8,011      10000      10000

 

 

資料來源於dba_hist_resource_limit

 

注意這裡僅列出當前使用或最大使用量>80% *最大限制的資源名,如果沒有列在這裡則說明 資源使用量安全
Current Utilization 當前對該資源(包括Enqueue Resource、Lock和processes)的使用量

Maximum Utilization 從最近一次例項啟動到現在該資源的最大使用量

Initial Allocation  初始分配值,一般等於引數檔案中指定的值

Limit  實際上限值

 

 

 

17 init.ora Parameters     

 

init.ora Parameters               DB/Inst: MAC/MAC2  Snaps: 70719-70723

                                                                End value
Parameter Name                Begin value                       (if different)
----------------------------- --------------------------------- --------------
_compression_compatibility    11.2.0
_kghdsidx_count               4
_ksmg_granule_size            67108864
_shared_pool_reserved_min_all 4100
archive_lag_target            900
audit_file_dest               /u01/app/oracle/admin/MAC/adum
audit_trail                   OS
cluster_database              TRUE
compatible                    11.2.0.2.0
control_files                 +DATA/MAC/control01.ctl, +RECO
db_16k_cache_size             268435456
db_block_size                 8192
db_cache_size                 19327352832
db_create_file_dest           +DATA

 

Parameter Name 引數名

Begin value 開始快照時的引數值

End value 結束快照時的引數值 (僅在發生變化時列印)

 

 

18 Global Messaging Statistics

 

Global Messaging Statistics       DB/Inst: MAC/MAC2  Snaps: 70719-70723

Statistic                                    Total   per Second    per Trans
--------------------------------- ---------------- ------------ ------------
acks for commit broadcast(actual)           53,705         14.9          0.2
acks for commit broadcast(logical          311,182         86.1          1.3
broadcast msgs on commit(actual)           317,082         87.7          1.3
broadcast msgs on commit(logical)          317,082         87.7          1.3
broadcast msgs on commit(wasted)           263,332         72.9          1.1
dynamically allocated gcs resourc                0          0.0          0.0
dynamically allocated gcs shadows                0          0.0          0.0
flow control messages received                 267          0.1          0.0
flow control messages sent                     127          0.0          0.0
gcs apply delta                                  0          0.0          0.0
gcs assume cvt                              55,541         15.4          0.2

全域性通訊統計資訊,資料來源WRH$_DLM_MISC;

 

 

 20 Global CR Served Stats

 

Global CR Served Stats            DB/Inst: MAC/MAC2  Snaps: 70719-70723

Statistic                                   Total
------------------------------ ------------------
CR Block Requests                         403,703
CURRENT Block Requests                    444,896
Data Block Requests                       403,705
Undo Block Requests                        94,336
TX Block Requests                         307,896
Current Results                           652,746
Private results                            21,057
Zero Results                              104,720
Disk Read Results                          69,418
Fail Results                                  508
Fairness Down Converts                    102,844
Fairness Clears                            15,207
Free GC Elements                                0
Flushes                                   105,052
Flushes Queued                                  0
Flush Queue Full                                0
Flush Max Time (us)                             0
Light Works                                71,793
Errors                                        117

 

 

LMS傳輸CR BLOCK的統計資訊,資料來源WRH$_CR_BLOCK_SERVER

 

 

 

21 Global CURRENT Served Stats

 

 

Global CURRENT Served Stats        DB/Inst: MAC/MAC2  Snaps: 70719-70723
-> Pins    = CURRENT Block Pin Operations
-> Flushes = Redo Flush before CURRENT Block Served Operations
-> Writes  = CURRENT Block Fusion Write Operations

Statistic         Total   % <1ms  % <10ms % <100ms    % <1s   % <10s
---------- ------------ -------- -------- -------- -------- --------
Pins             73,018    12.27    75.96     8.49     2.21     1.08
Flushes          79,336     5.98    50.17    14.45    19.45     9.95
Writes          102,189     3.14    35.23    19.34    33.26     9.03

 

資料來源dba_hist_current_block_server

 

 

Time to process current block request = (pin time + flush time + send time)

Pins CURRENT Block Pin Operations , PIN的內涵是處理一個BAST  不包含對global current block的flush和實際傳輸

The pin time represents how much time is required to process a BAST. It does not include the flush time and
the send time. The average pin time per block served should be very low because the processing consists
mainly of code path and should never be blocked.

Flush 指 髒塊被LMS程式傳輸出去之前,其相關的redo必須由LGWR已經flush 到磁碟上

 

Write 指fusion write number of writes which were mediated; 節點之間寫髒塊需求相互促成的行為 KJBL.KJBLREQWRITE  gcs write request msgs 、gcs writes refused

% <1ms  % <10ms % <100ms    % <1s   % <10s  分別對應為pin、flush、write行為耗時的比例

例如在上例中flush和 write 在1s 到10s之間的有9%,在100ms 和1s之間的有19%和33%,因為flush和write都是IO操作 所以這裡可以預見IO存在問題,延遲較高

 

 

22 Global Cache Transfer Stats

 

Global Cache Transfer Stats        DB/Inst: MAC/MAC2  Snaps: 70719-70723
-> Immediate  (Immed) - Block Transfer NOT impacted by Remote Processing Delays
-> Busy        (Busy) - Block Transfer impacted by Remote Contention
-> Congested (Congst) - Block Transfer impacted by Remote System Load
-> ordered by CR + Current Blocks Received desc

                               CR                         Current
                 ----------------------------- -----------------------------
Inst Block         Blocks      %      %      %   Blocks      %      %      %
  No Class       Received  Immed   Busy Congst Received  Immed   Busy Congst
---- ----------- -------- ------ ------ ------ -------- ------ ------ ------
   1 data block   133,187   76.3   22.6    1.1  233,138   75.2   23.0    1.7
   4 data block   143,165   74.1   24.9    1.0  213,204   76.6   21.8    1.6
   3 data block   122,761   75.9   23.0    1.1  220,023   77.7   21.0    1.3
   1 undo header  104,219   95.7    3.2    1.1      941   93.4    5.8     .7
   4 undo header   95,823   95.2    3.7    1.1      809   93.4    5.3    1.2
   3 undo header   95,592   95.6    3.3    1.1      912   94.6    4.5     .9
   1 undo block    25,002   95.8    3.4     .9        0    N/A    N/A    N/A
   4 undo block    23,303   96.0    3.1     .9        0    N/A    N/A    N/A
   3 undo block    21,672   95.4    3.7     .9        0    N/A    N/A    N/A
   1 Others         1,909   92.0    6.8    1.2    6,057   89.6    8.9    1.5
   4 Others         1,736   92.4    6.1    1.5    5,841   88.8    9.9    1.3
   3 Others         1,500   92.4    5.9    1.7    4,405   87.7   10.8    1.6

資料來源DBA_HIST_INST_CACHE_TRANSFER

 

 

Inst No 節點號

Block Class 塊的型別

CR Blocks Received 該節點上 該型別CR 塊的接收數量

CR Immed %: CR塊請求立即接收到的比例

CR Busy%:CR塊請求由於遠端爭用而沒有立即接收到的比例

CR Congst%: CR塊請求由於遠端負載高而沒有立即接收到的比例

 

Current Blocks Received  該節點上 該型別Current 塊的接收數量

Current Immed %: Current塊請求立即接收到的比例

Current Busy%:Current塊請求由於遠端爭用而沒有立即接收到的比例

Current Congst%: Current塊請求由於遠端負載高而沒有立即接收到的比例

 

Congst%的比例應當非常低 不高於2%, Busy%很大程度受到IO的影響,如果超過10% 一般會有嚴重的gc buffer busy acquire/release

 

補充 RAC 相關指標 內容由 tong.wang@parnassusdata.com 整理

 

RAC相關指標

Global Cache Load Profile

Per Second Per Transaction
Global Cache blocks received: 12.06 2.23
Global Cache blocks served: 8.18 1.51
GCS/GES messages received: 391.19 72.37
GCS/GES messages sent: 368.76 68.22
DBWR Fusion writes: 0.10 0.02
Estd Interconnect traffic (KB) 310.31

 

 

指標 指標說明
Global Cache blocks received 通過硬體連線收到遠端例項的資料塊的數量。發生在一個程式請求一致性讀一個資料塊不是在本地快取中。Oracle傳送一個請求到另外的例項。一旦緩衝區收到,這個統計值就會增加。這個統計值是另兩個統計值的和:Global Cache blocks received = gc current blocks received + gc cr blocks received
Global Cache blocks served 通過硬體連線傳送到遠端例項的資料塊的數量。這個統計值是另外兩個統計值的和:Global Cache blocks served = gc current blocks served + gc cr blocks served
GCS/GES messages received 通過硬體連線收到遠端例項的訊息的數量。這個統計值通常代表RAC服務引起的開銷。這個統計值是另外兩個統計值的和:GCS/GES messages received = gcs msgs received + ges msgs received
GCS/GES messages sent 通過硬體連線傳送到遠端例項的訊息的數量。這個統計值通常代表RAC服務引起的開銷。這個統計值是另外兩個統計值的和:GCS/GES messages sent = gcs messages sent + ges messages sent
DBWR Fusion writes 這個統計值顯示融合寫入的次數。在RAC中,單例項Oracle資料庫,資料塊只被寫入磁碟因為資料過期,緩衝替換或者發生檢查點。當一個資料塊在快取中被替換因為資料過期或發生檢查點但在另外的例項沒有寫入磁碟,Global Cache Service會請求例項將資料塊寫入磁碟。因此融合寫入不包括在第一個例項中的額外寫入磁碟。大量的融合寫入表明一個持續的問題。例項產生的融合寫入請求佔總的寫入請求的比率用於效能分析。高比率表明DB cache大小不合適或者檢查點效率低。
Estd Interconnect traffic (KB) 連線傳輸的KB大小。計算公式如下:Estd Interconnect traffic (KB) = ((‘gc cr blocks received’+ ‘gc current blocks received’ + ‘gc cr blocksserved’+ ‘gc current blocks served’) * Block size)


+ ((‘gcs messages sent’ + ‘ges messages sent’ + ‘gcs msgs received’+ ‘gcs msgs

received’)*200)/1024/Elapsed Time

 

 

Global Cache Efficiency Percentages (Target local+remote 100%)

 

Buffer access – local cache %: 91.05
Buffer access – remote cache %: 0.03
Buffer access – disk %: 8.92

 

 

 

指標 指標說明
Buffer access – local cache % 資料塊從本地快取命中佔會話總的資料庫請求次數的比例。在OLTP應用中最希望的是儘可能維持這個比率較高,因為這是最低成本和最快速的獲得資料庫資料塊的方法。計算公式:Local Cache Buffer Access Ratio = 1 – ( physical reads cache + Global Cache blocks received ) / Logical Reads
Buffer access – remote cache % 資料塊從遠端例項快取命中佔會話總的資料塊請求的比例。在OLTP應用中這個比率和Buffer access – local cache的和應該儘可能的高因為這兩種方法訪問資料庫資料塊是最快速最低成本的。這個比率的計算方法:Remote Cache Buffer Access Ratio = Global Cache blocks received / Logical Reads
Buffer access – disk % 從磁碟上讀資料塊到快取佔會話總的資料塊請求次數的比例。在OLTP應用中希望維持這個比例低因為物理讀是最慢的訪問資料庫資料塊的方式。這個比率計算方法:1 – physical reads cache / Logical Reads

 

 

 

Global Cache and Enqueue Services – Workload Characteristics

Avg global enqueue get time (ms): 0.0
Avg global cache cr block receive time (ms): 0.3
Avg global cache current block receive time (ms): 0.2
Avg global cache cr block build time (ms): 0.0
Avg global cache cr block send time (ms): 0.0
Global cache log flushes for cr blocks served %: 1.2
Avg global cache cr block flush time (ms): 1.8
Avg global cache current block pin time (ms): 1,021.7
Avg global cache current block send time (ms): 0.0
Global cache log flushes for current blocks served %: 6.9
Avg global cache current block flush time (ms): 0.9

 

本文永久地址http://www.askmaclean.com/archives/rac-awr-statistics.html

 

指標 指標說明
Avg global enqueue get time (ms) 通過interconnect傳送訊息,為爭奪資源開啟一個新的全域性佇列或者對已經開啟的佇列轉換訪問模式所花費的時間。如果大於20ms,你的系統可能會出現超時。
Avg global cache cr block receive time (ms) 從請求例項傳送訊息到mastering instance(2-way get)和一些到holding instance (3-way get)花費的時間。這個時間包括在holding instance生成資料塊一致性讀映像的時間。CR資料塊獲取耗費的時間不應該大於15ms。
Avg global cache current block receive time (ms) 從請求例項傳送訊息到mastering instance(2-way get)和一些到holding instance (3-way get)花費的時間。這個時間包括holding instance日誌重新整理花費的時間。Current Block獲取耗費的時間不大於30ms
Avg global cache cr block build time (ms) CR資料塊建立耗費的時間
Avg global cache cr block send time (ms) CR資料塊傳送耗費的時間
Global cache log flushes for cr blocks served % 需要日誌重新整理的CR資料塊佔總的需要服務的CR資料塊的比例。
Avg global cache cr block flush time (ms) CR資料塊重新整理耗費的時間
Avg global cache current block pin time (ms) Current資料塊pin耗費的時間
Avg global cache current block send time (ms) Current資料塊傳送耗費的時間
Global cache log flushes for current blocks served % 需要日誌重新整理的Current資料塊佔總的需要服務的Current資料塊的比例
Avg global cache current block flush time (ms) Current資料塊重新整理耗費的時間

 

Global Cache and Enqueue Services – Messaging Statistics

 

Avg message sent queue time (ms): 2,367.6
Avg message sent queue time on ksxp (ms): 0.1
Avg message received queue time (ms): 0.3
Avg GCS message process time (ms): 0.0
Avg GES message process time (ms): 0.0
% of direct sent messages: 54.00
% of indirect sent messages: 44.96
% of flow controlled messages: 1.03

 

 

 

指標 指標說明
Avg message sent queue time (ms) 一條資訊進入佇列到傳送它的時間
Avg message sent queue time on ksxp (ms) 對端收到該資訊並返回ACK的時間,這個指標很重要,直接反應了網路延遲,一般小於1ms
Avg message received queue time (ms) 一條資訊進入佇列到收到它的時間
Avg GCS message process time (ms)
Avg GES message process time (ms)
% of direct sent messages 直接傳送資訊佔的比率
% of indirect sent messages 間接傳送資訊佔的比率,一般是排序或大的資訊,流控制也可能引起
% of flow controlled messages 流控制資訊佔的比率,流控制最常見的原因是網路狀況不佳, % of flowcontrolled messages應當小於1%

 

 

Wait Event Histogram

 

% of Waits
Event Total Waits <1ms <2ms <4ms <8ms <16ms <32ms <=1s >1s
ADR block file read 208 38.0 3.4 44.7 13.9
ADR block file write 40 100.0
ADR file lock 48 100.0
ARCH wait for archivelog lock 3 100.0
ASM file metadata operation 12.8K 99.7 .1 .0 .0 .0 .2 .0
Backup: MML write backup piece 310.5K 7.6 .1 .1 1.3 10.4 30.2 50.2 .0
CGS wait for IPC msg 141.7K 100.0
CSS initialization 34 50.0 47.1 2.9
CSS operation: action 110 48.2 20.9 28.2 2.7
CSS operation: query 102 88.2 3.9 7.8
DFS lock handle 6607 93.9 .5 .2 .0 .0 5.3 .0
Disk file operations I/O 1474 100.0
IPC send completion sync 21.9K 99.5 .1 .1 .1 .0 .2
KJC: Wait for msg sends to complete 13 100.0
LGWR wait for redo copy 16.3K 100.0 .0
Log archive I/O 3 33.3 66.7
PX Deq: Signal ACK EXT 2256 99.8 .1 .1
PX Deq: Signal ACK RSG 2124 99.9 .1 .0
PX Deq: Slave Session Stats 7997 94.6 .9 .9 2.5 .8 .4
PX Deq: Table Q qref 2355 99.9 .1
PX Deq: reap credit 1215.7K 100.0 .0 .0
PX qref latch 1366 100.0
Parameter File I/O 194 94.8 1.0 1.0 1.0 1.5 .5

 

 

Wait Event Histogram:等待時間直方圖

Event:等待事件名字

Total Waits:該等待事件在快照時間內等待的次數

%of Waits < 1ms :小於1ms的等待次數

%of Waits < 2ms :小於2ms的等待次數

%of Waits < 4ms :小於4ms的等待次數

%of Waits < 8ms :小於8ms的等待次數

%of Waits < 16ms :小於16ms的等待次數

%of Waits < 32ms :小於32ms的等待次數

%of Waits < =1s :小於等於1s的等待次數

%of Waits > 1s :大於1s的等待次數

 

Parent Latch Statistics

  • only latches with sleeps are shown
  • ordered by name
Latch Name Get Requests Misses Sleeps Spin & Sleeps 1->3+
Real-time plan statistics latch 77,840 136 20 116/0/0/0
active checkpoint queue latch 321,023 20,528 77 20451/0/0/0
active service list 339,641 546 132 424/0/0/0
call allocation 328,283 550 148 440/0/0/0
enqueues 1,503,525 217 14 203/0/0/0
ksuosstats global area 2,605 1 1 0/0/0/0
messages 2,608,863 141,380 29 141351/0/0/0
name-service request queue 155,047 43 15 28/0/0/0
qmn task queue latch 2,368 90 78 12/0/0/0
query server process 268 30 30 0/0/0/0
redo writing 910,703 11,623 50 11573/0/0/0
resmgr:free threads list 14,454 190 4 186/0/0/0
space background task latch 11,209 15 7 8/0/0/0

 

Latch Name:閂名稱

Get Requests:申請獲得父閂的次數

 

本文永久地址http://www.askmaclean.com/archives/rac-awr-statistics.html

 

 

Child Latch Statistics

  • only latches with sleeps/gets > 1/100000 are shown
  • ordered by name, gets desc
Latch Name Child Num Get Requests Misses Sleeps Spin & Sleeps 1->3+
KJC message pool free list 1 96,136 82 20 62/0/0/0
Lsod array latch 10 2,222 153 118 58/0/0/0
Lsod array latch 13 2,151 43 14 29/0/0/0
Lsod array latch 4 2,066 154 124 59/0/0/0
Lsod array latch 5 1,988 105 44 63/0/0/0
Lsod array latch 9 1,734 95 32 64/0/0/0
Lsod array latch 2 1,707 88 38 55/0/0/0
Lsod array latch 11 1,695 88 32 57/0/0/0
Lsod array latch 6 1,680 158 126 64/0/0/0
Lsod array latch 12 1,657 155 111 65/0/0/0
Lsod array latch 7 1,640 90 34 59/0/0/0
Lsod array latch 1 1,627 169 153 46/0/0/0
Lsod array latch 3 1,555 87 36 54/0/0/0
Lsod array latch 8 1,487 127 88 57/0/0/0
cache buffers chains 47418 354,313 391 4 387/0/0/0
cache buffers chains 8031 337,135 250 8 242/0/0/0
cache buffers chains 78358 305,022 528 9 519/0/0/0
cache buffers chains 6927 241,808 129 4 125/0/0/0

Latch Name:閂名稱

Child Num:

Get Requests:

Misses:

Sleeps:

Spin&Sleeps 1->3+:

 

 

Dictionary Cache Stats (RAC)

Cache GES Requests GES Conflicts GES Releases
dc_awr_control 11 5 0
dc_global_oids 5 0 0
dc_histogram_defs 215 1 707
dc_objects 90 9 0
dc_segments 79 10 73
dc_sequences 35,738 37 0
dc_table_scns 6 0 0
dc_tablespace_quotas 907 77 0
dc_users 10 0 0
outstanding_alerts 576 288 0

 

Cache:字典快取類名

GES Requests:

GES Conflicts:

GES Releases:

 

 

 

Library Cache Activity (RAC)

Namespace GES Lock Requests GES Pin Requests GES Pin Releases GES Inval Requests GES Invali- dations
ACCOUNT_STATUS 242 0 0 0 0
BODY 0 1,530,013 1,530,013 0 0
CLUSTER 74 74 74 0 0
DBLINK 246 0 0 0 0
EDITION 311 311 311 0 0
HINTSET OBJECT 186 186 186 0 0
INDEX 152,360 152,360 152,360 0 0
QUEUE 223 9,717 9,717 0 0
SCHEMA 255 0 0 0 0
SUBSCRIPTION 0 26 26 0 0
TABLE/PROCEDURE 275,215 3,023,083 3,023,083 0 0
TRIGGER 0 384,493 384,493 0 0

 

Namespace:library cache 的名稱空間

GES Lock Requests:

GES Pin Requests:

GES Inval Requests:

GES Invali-dations:

 

 

 

Interconnect Ping Latency Stats

  • Ping latency of the roundtrip of a message from this instance to
  • target instances.
  • The target instance is identified by an instance number.
  • Average and standard deviation of ping latency is given in miliseconds
  • for message sizes of 500 bytes and 8K.
  • Note that latency of a message from the instance to itself is used as
  • control, since message latency can include wait for CPU
Target Instance 500B Ping Count Avg Latency 500B msg Stddev 500B msg 8K Ping Count Avg Latency 8K msg Stddev 8K msg
1 1,138 0.20 0.03 1,138 0.20 0.03
2 1,138 0.17 0.04 1,138 0.20 0.05
3 1,138 0.19 0.22 1,138 0.23 0.22
4 1,138 0.18 0.04 1,138 0.21 0.04

 

Target Instance:目標例項

500B Ping Count:

Avg Latency 500B msg:

Stddev 500B msg:

8K Ping Count:

Avg Latency 8K msg:

Stddev 8K msg:

 

 

 

Interconnect Throughput by Client

  • Throughput of interconnect usage by major consumers
  • All throughput numbers are megabytes per second
Used By Send Mbytes/sec Receive Mbytes/sec
Global Cache 0.10 0.20
Parallel Query 0.02 0.06
DB Locks 0.09 0.09
DB Streams 0.00 0.00
Other 0.02 0.01

 

Used By:主要消費者

Send Mbytes/sec:傳送Mb/每秒

Receive Mbytes/sec:接收Mb/每秒

 

 

Interconnect Device Statistics

  • Throughput and errors of interconnect devices (at OS level)
  • All throughput numbers are megabytes per second
Device Name IP Address Public Source Send Mbytes/sec Send Errors Send Dropped Send Buffer Overrun Send Carrier Lost Receive Mbytes/sec Receive Errors Receive Dropped Receive Buffer Overrun Receive Frame Errors
bondib0 192.168.10.8 NO cluster_interconnects parameter 0.00 0 0 0 0 0.00 0 0 0

 

 

Device Name:裝置名稱

IP Address:IP地址

Public:是否為公用網路

Source:來源

Send Mbytes/sec:傳送MB/每秒

Send Errors:傳送錯誤

Send Dropped:

Send Buffer Overrun:

Send Carrier Lost:

Receive Mbytes/sec:

Receive Errors:

Receive Dropped:

Receive Buffer Overrun:

Receive Frame Errors:

 

 

 

Dynamic Remastering Stats

  • times are in seconds
  • Affinity objects – objects mastered due to affinity at begin/end snap
Name Total per Remaster Op Begin Snap End Snap
remaster ops 29 1.00
remastered objects 40 1.38
replayed locks received 1,990 68.62
replayed locks sent 877 30.24
resources cleaned 0 0.00
remaster time (s) 5.0 0.17
quiesce time (s) 1.7 0.06
freeze time (s) 0.6 0.02
cleanup time (s) 0.7 0.02
replay time (s) 0.2 0.01
fixwrite time (s) 1.3 0.04
sync time (s) 0.5 0.02
affinity objects 365 367

 

 

Name:

Total:

Per Remaster Op:

Begin Snap:

End Snap:

 

參考文件

Statistics Descriptions  http://docs.oracle.com/cd/B19306_01/server.102/b14237/stats002.htm

Memory Configuration and Use  http://docs.oracle.com/cd/B19306_01/server.102/b14211/memory.htm

Library Cache Hit (%)   http://docs.oracle.com/cd/B16240_01/doc/doc.102/e16282/oracle_database_help/oracle_database_instance_efficiency_libcache_hit_pct.html

Oracle? Database Performance Tuning Guide 12c Release 1 (12.1)

How to Interpret the “SQL ordered by Physical Reads (UnOptimized)” Section in AWR Reports (11.2 onwards) [ID 1466035.1]

【Oracle Database 12c新特性】DROP Index/CONSTRAINT ONLINE

12c中提供了DROP Index/CONSTRAINT ONLINE的新特性, ONLINE意味著在drop index期間對於表或分割槽的DML操作不被阻塞。

DROP INDEX ONLINE對於分割槽索引或者非分割槽索引均可用。

 

在12c drop index online之前普通的drop index操作會可能導致短暫的enq: TM 等待,原因是

 

SQL> select * from v$version;

BANNER
----------------------------------------------------------------
Oracle Database 10g Enterprise Edition Release 10.2.0.5.0 - 64bi
PL/SQL Release 10.2.0.5.0 - Production
CORE    10.2.0.5.0      Production
TNS for Linux: Version 10.2.0.5.0 - Production
NLSRTL Version 10.2.0.5.0 - Production

SQL> 
SQL> create table DML_ONLINE as select * from dba_tables;

Table created.

SQL> create index idx_name on DML_ONLINE(table_name);

Index created.

SQL> alter session set events '10704 trace name context forever , level 10';

Session altered.

SQL> drop index idx_name ;

Index dropped.

SQL> select object_id from dba_objects where object_name='DML_ONLINE';

 OBJECT_ID
----------
     97302

	97302=>17C16 

SQL> oradebug setmypid

Statement processed.

SQL> oradebug tracefile_name

/s01/admin/G10R25/udump/g10r25_ora_7007.trc

[oracle@vrh8 ~]$ grep "ksqgtl \*\*\*" /s01/admin/G10R25/udump/g10r25_ora_7007.trc
ksqgtl *** TX-00080027-000021d4 mode=6 flags=0x401 timeout=0 ***
ksqgtl *** TM-00017c16-00000000 mode=6 flags=0x401 timeout=0 ***
ksqgtl *** TM-00000318-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** CU-92e387e8-00000000 mode=6 flags=0x10 timeout=300 ***
ksqgtl *** TM-0000023a-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000049-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-0000004a-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-0000004b-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-0000004c-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-000002d8-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000039-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** CU-92e37c98-00000000 mode=6 flags=0x10 timeout=300 ***
ksqgtl *** CU-92e37c98-00000000 mode=6 flags=0x10 timeout=300 ***
ksqgtl *** TM-00000014-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** CU-92e377a8-00000000 mode=6 flags=0x10 timeout=300 ***
ksqgtl *** CU-92e377a8-00000000 mode=6 flags=0x10 timeout=300 ***
ksqgtl *** TM-00000013-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-0000000e-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000012-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TS-00000000-00414641 mode=6 flags=0x11 timeout=0 ***
ksqgtl *** TT-00000000-00000010 mode=4 flags=0x11 timeout=21474836 ***
ksqgtl *** RO-00010014-00000001 mode=6 flags=0x11 timeout=21474836 ***
ksqgtl *** RO-00010014-00000002 mode=1 flags=0x11 timeout=21474836 ***
ksqgtl *** TM-0000000e-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TX-00010018-00001cbc mode=6 flags=0x401 timeout=0 ***
ksqgtl *** TX-00030006-00002417 mode=6 flags=0x401 timeout=0 ***
ksqgtl *** CI-00000001-00000005 mode=6 flags=0x10 timeout=21474836 ***
ksqgtl *** TM-0000000e-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** CU-92e372b8-00000000 mode=6 flags=0x10 timeout=300 ***

97302=>17C16  ksqgtl *** TM-00017c16-00000000 mode=6   這裡可以看到 drop index 期間拿了對應表的TM mode=6 exclusive mode table lock

 

 

 

 

如果使用12c 中的drop index Online則:

 

 

 

SQL> select banner from v$version where rownum=1;

BANNER
--------------------------------------------------------------------------------
Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit Production

SQL> create table DML_ONLINE as select * from dba_tables;

表已建立。

SQL> create index idx_name on DML_ONLINE(table_name);

索引已建立。

SQL> alter session set events '10704 trace name context forever , level 10';

會話已更改。

SQL> drop index idx_name online ;

索引已刪除。

SQL> select object_id from dba_objects where object_name='DML_ONLINE';

 OBJECT_ID
----------
    117648

SQL>  oradebug setmypid
已處理的語句
SQL> oradebug tracefile_name
maclean_ora_1212.trc

[oracle@vrh8 ~]$ grep "ksqgtl \*\*\*"  maclean_ora_1212.trc 

[oracle@vrh8 ~]$ grep "ksqgtl \*\*\*"  maclean_ora_4280.trc 
ksqgtl *** CU-0FE14E98-000007FF-00000000-00000000 mode=6 flags=0x10000 timeout=300 ***
ksqgtl *** TM-0001CB90-00000000-00000000-00000000 mode=2 flags=0x401 timeout=0 ***
ksqgtl *** OD-0001CB90-00000000-00000000-00000000 mode=4 flags=0x10401 timeout=0 ***
ksqgtl *** OD-0001CB91-00000000-00000000-00000000 mode=6 flags=0x10401 timeout=0 ***
ksqgtl *** TM-0001CB90-00000000-00000000-00000000 mode=2 flags=0x401 timeout=0 ***
ksqgtl *** CU-0FE103C8-000007FF-00000000-00000000 mode=6 flags=0x10000 timeout=300 ***
ksqgtl *** CU-0FE103C8-000007FF-00000000-00000000 mode=6 flags=0x10000 timeout=300 ***
ksqgtl *** TM-0000004B-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** CU-0FE07708-000007FF-00000000-00000000 mode=6 flags=0x10000 timeout=300 ***
ksqgtl *** CU-0FE07708-000007FF-00000000-00000000 mode=6 flags=0x10000 timeout=300 ***
ksqgtl *** TM-00000013-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TX-00090010-00000C08-00000000-00000000 mode=6 flags=0x401 timeout=0 ***
ksqgtl *** TM-00000012-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TX-00030006-00000D1A-00000000-00000000 mode=6 flags=0x401 timeout=0 ***
ksqgtl *** CU-0FDFABF8-000007FF-00000000-00000000 mode=6 flags=0x10000 timeout=300 ***
ksqgtl *** TM-00000224-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00001569-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-0000004D-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000265-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-0000007F-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-000000EB-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-000000ED-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-000000F3-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-0000026C-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000142-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000143-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000123-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-000002AF-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000146-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000127-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000128-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000129-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-0000012A-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000138-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-0000003D-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000014-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000013-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-0000000E-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000012-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TS-00000000-00419660-00000000-00000000 mode=6 flags=0x10001 timeout=0 ***
ksqgtl *** TT-00000000-00000010-00000000-00000000 mode=4 flags=0x10001 timeout=21474836 ***
ksqgtl *** TS-00000000-00419661-00000000-00000000 mode=6 flags=0x10001 timeout=21474836 ***
ksqgtl *** RO-00010038-00000001-00000000-00000000 mode=6 flags=0x10001 timeout=21474836 ***
ksqgtl *** RO-00010038-00000002-00000000-00000000 mode=6 flags=0x10001 timeout=21474836 ***
ksqgtl *** TM-0000000E-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TX-00040014-00000BB2-00000000-00000000 mode=6 flags=0x401 timeout=0 ***
ksqgtl *** TX-00090006-00000C0D-00000000-00000000 mode=6 flags=0x401 timeout=0 ***
ksqgtl *** CR-00010038-00000001-00000000-00000000 mode=6 flags=0x10001 timeout=21474836 ***
ksqgtl *** CR-00010038-00000002-00000000-00000000 mode=6 flags=0x10001 timeout=21474836 ***
ksqgtl *** TM-0000000E-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** CU-0FDFA688-000007FF-00000000-00000000 mode=6 flags=0x10000 timeout=300 ***
ksqgtl *** MC-00000000-87EFB967-00000000-00000000 mode=4 flags=0x10001 timeout=21474836 ***

[oracle@vrh8 ~]$ grep "ksqgtl \*\*\*"  maclean_ora_4280.trc |grep TM-
ksqgtl *** TM-0001CB90-00000000-00000000-00000000 mode=2 flags=0x401 timeout=0 ***
ksqgtl *** TM-0001CB90-00000000-00000000-00000000 mode=2 flags=0x401 timeout=0 ***
ksqgtl *** TM-0000004B-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000013-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000012-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000224-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00001569-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-0000004D-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000265-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-0000007F-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-000000EB-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-000000ED-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-000000F3-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-0000026C-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000142-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000143-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000123-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-000002AF-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000146-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000127-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000128-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000129-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-0000012A-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000138-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-0000003D-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000014-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000013-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-0000000E-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-00000012-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-0000000E-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***
ksqgtl *** TM-0000000E-00000000-00000000-00000000 mode=3 flags=0x401 timeout=21474836 ***

117648=> 1CB90  

可以看到 drop index online之後只 獲取了 mode=2 SS的 TM lock  TM-0001CB90-00000000-00000000-00000000 mode=2

 

 

 

類似於 INDEX , 12c中還提供了 DROP CONSTRAINT ONLINE的新特性, 允許線上drop 約束; 但是存在如下限制:

  • Cannot drop a constraint with CASCADE
  • Cannot drop a referencing constraint

 

具體語法如下:

 

 

ALTER TABLE hr.employees DROP CONSTRAINT emp_email_uk ONLINE;

 

 

這2中 ONLINE DROP 新特性 究其根本都是在DROP 過程中不在acquire TM mode=6的表佇列鎖,雖然這些操作本身的耗時並不久,也就不會長時間阻塞DML ,但是對於高併發的OLTP系統而言 阻塞仍可能是致命的。

V$RECOVERY_PROGRESS For Oracle Recovery

V$RECOVERY_PROGRESS For Oracle Recovery

 

V$RECOVERY_PROGRESS view
Major overhaul for Media Recovery and Physical Standby in 10gR2
Tracks redo apply rate: overall and recent
Breakdown of apply vs. checkpoint time per log

 

Recovery performance can be monitored using V$RECOVERY_PROGRESS and several system events
and stats. However, more work is needed in this space to help discover which parts of the recovery
algorithm are taking a long time. The discussion here mainly applies to RDBMS Release 11.2, but can
also be applicable for future releases. Below, new stats are described in bold-faced.

 

more info: http://emrebaransel.blogspot.jp/2010/06/mrp-speed-log-apply-rate-of-standby.html

補丁集Patch Set 11.2.0.4 來了!

#ORACLE DATABASE PATCHSET# Oracle 11gR2重要更新 Patchset 11.2.0.4 已經release ,補丁號 patch 13390677. 相關文件Note 742060.1 . 11.2.0.4的新特性請參考這裡 http://t.cn/z82pt6W 新特性包括 Trace File Analyzer (TFA) 和 RACcheck ; 11.2.0.4 來了!

 

11.2.0.4 patchset_2

 

11.2.0.4 patchset_3

 

 

11.2.0.4 patchset_1

_use_adaptive_log_file_sync know more

Configuration Parameters
The following parameters affect the behavior of adaptive log file sync:

  • _use_adaptive_log_file_sync
    • TRUE: Enable adaptive log file sync (default)
    • FALSE: Disable adaptive log file sync (i.e., just use post/wait)
    • POLLING_ONLY: Use polling with adaptive polling interval
  • _adaptive_log_file_sync_use_polling_threshold
    • Larger values make it harder to switch to polling
    • Default value is 110%, which means the current redo synch time must exceed the expected poll time
    • by at least 10% for the algorithm to favor polling over post/wait
    • In the pseudocode above, refer to the use_polling_threshold variable
  • _adaptive_log_file_sync_use_postwait_threshold
    • Smaller values make it harder to switch to post/wait
    • Default value is 50%, which means the current scheduling delay needs to drop to half of that when
    • polling was first used for the algorithm to favor post/wait over polling
    • In the pseudocode above, refer to the use_postwait_threshold variable
  • _adaptive_log_file_sync_poll_aggressiveness
    • Larger values result in smaller polling intervals
    • Default value is 0%, which means none of the current scheduling delay is subtracted from the polling interval
  • _adaptive_log_file_sync_sched_delay_window
    • The window over which the current scheduling delay is computed
    • Default value is 60 seconds, and it is unlikely you need to adjust this
  • _adaptive_log_file_sync_high_switch_freq_threshold
    • A warning is printed if adaptive log file sync switches frequently between post/wait and polling
    • If it is an LRG, a soft assert is also signalled
    • Default threshold is 3 switches per minute
  • _fg_sync_sleep_usecs
    • A non-zero value specified will use polling with a fixed interval and disable adaptive log file sync
  • _log_file_sync_timeout
    • How long the foreground waits for LGWR to post it when post/wait is used
    • Default value is 100 msecs

Maclean教你讀SQL TRACE TKProf報告

在《Maclean教你讀Oracle 10046 SQL TRACE》中我介紹了10046 TRACE的閱讀以及其中個欄位的含義, 接著我們介紹 10046 sql trace的搭檔工具TKPROF。

 

TKPROF是一個可執行檔案,自帶在Oracle Server軟體中,無需額外的安裝。 該工具檔案可以用來解析ORACLE的SQL TRACE(10046) 以便生成更可讀的內容。  實際上tkprof是對10046 SQL trace的內容作了彙總,例如一個語句遇到過的wait event 、其在PARSE、Execute、Fetch三階段的耗時、CPU_TIME等等。

 

由於tkprof是對10046 SQL TRACE的彙總,所以tkprof中的資訊 完全可以從10046中獲得, 10046的問題是 由於鉅細靡遺 所以TRACE內容可能過多,內容多則難以快速分析, TKPROF將10046  trace 解析過後更適合調優者閱讀。

 

TKPROF的語法如下:

tkprof tracefile outfile [explain=user/password] [options…]

幾個選項

print=integer     只列出前幾個SQL語句,integer    為指定的數量,例如print=10

sys=no                不列出以SYS使用者執行的語句

sort=option         排序選項, 選項列表如下:

 

 

  • prscnt number of times parse was called
  • prscpu cpu time parsing
  • prsela elapsed time parsing
  • prsdsk number of disk reads during parse
  • prsqry number of buffers for consistent read during parse
  • prscu number of buffers for current read during parse
  • prsmis number of misses in library cache during parse
  • execnt number of execute was called
  • execpu cpu time spent executing
  • exeela elapsed time executing
  • exedsk number of disk reads during execute
  • exeqry number of buffers for consistent read during execute
  • execu number of buffers for current read during execute
  • exerow number of rows processed during execute
  • exemis number of library cache misses during execute
  • fchcnt number of times fetch was called
  • fchcpu cpu time spent fetching
  • fchela elapsed time fetching
  • fchdsk number of disk reads during fetch
  • fchqry number of buffers for consistent read during fetch
  • fchcu number of buffers for current read during fetch
  • fchrow number of rows fetched
  • userid userid of user that parsed the cursor

 

 

接下來看一個最簡單的 TKPROF的例子:

 

 

 

 

drop table fullscan;

create table fullscan as select * from dba_objects;

exec dbms_stats.gather_table_stats(user,'FULLSCAN');

alter system flush shared_pool;
alter system flush buffer_cache;

alter session set events '10046 trace name context forever,level 12';

select count(*) from fullscan;

oradebug setmypid
oradebug tracefile_name;

/s01/admin/G10R25/udump/g10r25_ora_30334.trc

[oracle@vrh8 udump]$ tkprof /s01/admin/G10R25/udump/g10r25_ora_30334.trc 30334.tkf

TKPROF: Release 10.2.0.5.0 - Production on Sun Aug 25 02:21:27 2013   askmaclean.com

Copyright (c) 1982, 2007, Oracle.  All rights reserved.

vi  30334.tkf

Trace file: /s01/admin/G10R25/udump/g10r25_ora_30334.trc
Sort options: default

********************************************************************************
count    = number of times OCI procedure was executed
cpu      = cpu time in seconds executing
elapsed  = elapsed time in seconds executing
disk     = number of physical reads of buffers from disk
query    = number of buffers gotten for consistent read
current  = number of buffers gotten in current mode (usually for update)
rows     = number of rows processed by the fetch or execute call
********************************************************************************

select obj#,type#,ctime,mtime,stime,status,dataobj#,flags,oid$, spare1,
  spare2
from
 obj$ where owner#=:1 and name=:2 and namespace=:3 and remoteowner is null
  and linkname is null and subname is null

call     count       cpu    elapsed       disk      query    current        rows
------- ------  -------- ---------- ---------- ---------- ----------  ----------
Parse        1      0.00       0.00          0          0          0           0
Execute      1      0.00       0.00          0          0          0           0
Fetch        1      0.00       0.00          2          4          0           1
------- ------  -------- ---------- ---------- ---------- ----------  ----------
total        3      0.00       0.00          2          4          0           1

Misses in library cache during parse: 1
Misses in library cache during execute: 1
Optimizer mode: CHOOSE
Parsing user id: SYS   (recursive depth: 1)

Rows     Row Source Operation
-------  ---------------------------------------------------
      1  TABLE ACCESS BY INDEX ROWID OBJ$ (cr=4 pr=2 pw=0 time=133 us)
      1   INDEX RANGE SCAN I_OBJ2 (cr=3 pr=1 pw=0 time=74 us)(object id 37)

Elapsed times include waiting on following events:
  Event waited on                             Times   Max. Wait  Total Waited
  ----------------------------------------   Waited  ----------  ------------
  SQL*Net message to client                       1        0.00          0.00
  SQL*Net message from client                     1        0.01          0.01
  db file sequential read                         2        0.00          0.00
********************************************************************************

select count(*)
from
 fullscan

call     count       cpu    elapsed       disk      query    current        rows
------- ------  -------- ---------- ---------- ---------- ----------  ----------
Parse        1      0.00       0.00          4         15          0           0
Execute      1      0.00       0.00          0          0          0           0
Fetch        2      0.01       0.01       1139       1143          0           1
------- ------  -------- ---------- ---------- ---------- ----------  ----------
total        4      0.02       0.02       1143       1158          0           1

Misses in library cache during parse: 1
Optimizer mode: ALL_ROWS
Parsing user id: SYS

Rows     Row Source Operation
-------  ---------------------------------------------------
      1  SORT AGGREGATE (cr=1143 pr=1139 pw=0 time=15759 us)
  77268   TABLE ACCESS FULL FULLSCAN (cr=1143 pr=1139 pw=0 time=463719 us)  

Elapsed times include waiting on following events:      
  Event waited on                             Times   Max. Wait  Total Waited  
  ----------------------------------------   Waited  ----------  ------------
  SQL*Net message to client                       2        0.00          0.00  
  db file sequential read                         1        0.00          0.00
  db file scattered read                         80        0.00          0.00
  SQL*Net message from client                     2        0.00          0.00

 

 

 

 

 

在上述例子中我們可以看到TKPROF將 一個SQL Statement 的執行 劃分為幾個部分的資訊:

1. SQL 語句的parse 、execute 、fetch 階段的耗時:

 

select count(*)
from
 fullscan

call     count       cpu    elapsed       disk      query    current        rows
------- ------  -------- ---------- ---------- ---------- ----------  ----------
Parse        1      0.00       0.00          4         15          0           0
Execute      1      0.00       0.00          0          0          0           0
Fetch        2      0.01       0.01       1139       1143          0           1
------- ------  -------- ---------- ---------- ---------- ----------  ----------
total        4      0.02       0.02       1143       1158          0           1

 

 

 

call: 每一個遊標的行為被分成三個步驟:

  • Parse: 解析該遊標並生成執行計劃的統計資訊
  • Execute: 執行該遊標階段的統計資訊
  • Fetch : Fetch取得資料行階段的統計資訊

 

  • count   指的是該遊標的相關操作 的次數,例如parse count : 2 ,即該遊標解析了2次
  • CPU :   相關欄目 所消耗的CPU時間,單位為s
  • elapsed:  相關欄目所消耗的時間,單位為s
  • disk :     相關欄目所消耗的物理讀
  • query :  相關欄目所消耗的一致性邏輯讀 consistent logical read   ==>一般對於SELECT查詢而言 只有query 沒有current
  • current: 相關欄目當前邏輯讀 current logical read
  • rows 該步驟取回的行數 ==》在本例中由於是 count(*) 所以只有一行
  • Misses in library cache during parse: 1   在解析階段 library cache 發生了miss,則說明本次解析是硬解析

 

幾點釋疑:

 

1、對於PL/SQL而言 匿名塊/儲存過程 以及其中包含的SQL語句會同時體現在TKPROF中,即存在重疊;且SQL將以遞迴SQL的形式出現:

PARSING IN CURSOR #4 len=56 dep=1 uid=0 oct=6 lid=0 tim=1345130672819745 hv=3509762282 ad=’a7525f30′
UPDATE FULLSCAN SET OWNER=’MACLEAN’ WHERE OBJECT_ID=:B1

 

COMMIT也是這樣:

PARSING IN CURSOR #2 len=6 dep=1 uid=0 oct=44 lid=0 tim=1345130672822889 hv=255718823 ad=’0′
COMMIT

 

我們來看一個實際的例子:

 

 

alter system flush shared_pool;
alter system flush buffer_cache;
set timing on;
alter session set events '10046 trace name context forever,level 12';
create index ind_objd on fullscan(object_id);

begin
for i in 1..10000 loop
update fullscan set owner='MACLEAN' where object_id=i;
commit;
end loop;
end;
/
PL/SQL procedure successfully completed.

Elapsed: 00:00:04.00

begin
for i in 1..10000 loop
update fullscan set owner='MACLEAN' where object_id=i;
commit;
end loop;
end;

call     count       cpu    elapsed       disk      query    current        rows
------- ------  -------- ---------- ---------- ---------- ----------  ----------
Parse        1      0.00       0.00          0          0          0           0
Execute      1      0.62       0.68        178      20037          0           1
Fetch        0      0.00       0.00          0          0          0           0
------- ------  -------- ---------- ---------- ---------- ----------  ----------
total        2      0.62       0.68        178      20037          0           1

Misses in library cache during parse: 1
Optimizer mode: ALL_ROWS
Parsing user id: SYS

Elapsed times include waiting on following events:
  Event waited on                             Times   Max. Wait  Total Waited
  ----------------------------------------   Waited  ----------  ------------
  log file sync                                   1        0.00          0.00
  SQL*Net message to client                       1        0.00          0.00

********************************************************************************

UPDATE FULLSCAN SET OWNER='MACLEAN'
WHERE
 OBJECT_ID=:B1

call     count       cpu    elapsed       disk      query    current        rows
------- ------  -------- ---------- ---------- ---------- ----------  ----------
Parse        1      0.00       0.00          0          0          0           0
Execute  10000      2.90       2.69        178      20037      19364        9564
Fetch        0      0.00       0.00          0          0          0           0
------- ------  -------- ---------- ---------- ---------- ----------  ----------
total    10001      2.90       2.69        178      20037      19364        9564

Misses in library cache during parse: 1
Misses in library cache during execute: 1
Optimizer mode: ALL_ROWS
Parsing user id: SYS   (recursive depth: 1)

Elapsed times include waiting on following events:
  Event waited on                             Times   Max. Wait  Total Waited
  ----------------------------------------   Waited  ----------  ------------
  db file sequential read                       177        0.00          0.00

COMMIT

call     count       cpu    elapsed       disk      query    current        rows
------- ------  -------- ---------- ---------- ---------- ----------  ----------
Parse        1      0.00       0.00          0          0          0           0
Execute  10000      0.43       0.52          0          0       9564           0
Fetch        0      0.00       0.00          0          0          0           0
------- ------  -------- ---------- ---------- ---------- ----------  ----------
total    10001      0.43       0.52          0          0       9564           0

Misses in library cache during parse: 0
Parsing user id: SYS   (recursive depth: 1)

 

 

 

以上通過一個匿名塊  迴圈執行了10000次的 “update fullscan set owner=’MACLEAN’ where object_id=i;” 以及commit  總的執行 Elapsed: 00:00:04.00 。

該匿名塊總耗時為0.68s, 10000次迴圈update fullscan為2.69s,10000次commit總耗時0.52s ,  0.68+0.52+2.69=3.89s ,此外還有少量的遞迴SQL耗時也算在這個4.0s裡。

 

 

2、 在以上例子中看到, 對於 PL/SQL匿名塊、update、commit而言 有execute 階段 ,而沒有 fetch階段,fetch的次數為0。   對於SELECT語句而言 ,有execute階段,但是execute階段的disk、query、current一般為零,統統算在Fetch階段。

 

 

 

begin
for i in 1..10000 loop
update fullscan set owner='MACLEAN' where object_id=i;
commit;
end loop;
end;

call     count       cpu    elapsed       disk      query    current        rows
------- ------  -------- ---------- ---------- ---------- ----------  ----------
Parse        1      0.00       0.00          0          0          0           0
Execute      1      0.62       0.68        178      20037          0           1
Fetch        0      0.00       0.00          0          0          0           0
------- ------  -------- ---------- ---------- ---------- ----------  ----------
total        2      0.62       0.68        178      20037          0           1

Misses in library cache during parse: 1
Optimizer mode: ALL_ROWS
Parsing user id: SYS

Elapsed times include waiting on following events:
  Event waited on                             Times   Max. Wait  Total Waited
  ----------------------------------------   Waited  ----------  ------------
  log file sync                                   1        0.00          0.00
  SQL*Net message to client                       1        0.00          0.00

PARSING IN CURSOR #5 len=106 dep=0 uid=0 oct=47 lid=0 tim=1345130672819492 hv=3631473533 ad='a750b960'
begin
for i in 1..10000 loop
update fullscan set owner='MACLEAN' where object_id=i;
commit;
end loop;
end;
END OF STMT
PARSE #5:c=1000,e=891,p=0,cr=0,cu=0,mis=1,r=0,dep=0,og=1,tim=1345130672819487
BINDS #5: EXEC #5:c=3968396,e=3907489,p=178,cr=20037,cu=28928,mis=0,r=1,dep=0,og=1,tim=1345130676727033 WAIT #5: nam='log file sync' ela= 162 buffer#=8084 sync scn=14950441 p3=0 obj#=96606 tim=1345130676727293
WAIT #5: nam='SQL*Net message to client' ela= 5 driver id=1650815232 #bytes=1 p3=0 obj#=96606 tim=1345130676727343
*** 2013-08-25 03:00:52.748
WAIT #5: nam='SQL*Net message from client' ela= 234159641 driver id=1650815232 #bytes=1 p3=0 obj#=96606 tim=1345130910887016

 

 

 

3、實際在10046 中真實反映了 上述匿名塊的執行時間為 3907489 μs = 3.9s 以及其總的cr=20037 cu=28928( update的19364+commit的9564),但在TKPROF中 匿名塊等PL/SQL物件顯示的資訊並不全面,這可能是為了避免使用者的誤解。

 

 

TKPROF提供了多種排序的方法

 

Sort options: default

********************************************************************************
count    = number of times OCI procedure was executed
cpu      = cpu time in seconds executing
elapsed  = elapsed time in seconds executing
disk     = number of physical reads of buffers from disk
query    = number of buffers gotten for consistent read
current  = number of buffers gotten in current mode (usually for update)
rows     = number of rows processed by the fetch or execute call

 

一般我們對於查詢的調優 常用的組合是 SYS=NO  fchela, fchela即按照fetch階段的elapsed time按照從大到小排列

 

 

[oracle@vrh8 udump]$ tkprof g10r25_ora_30731.trc  30731.tkf sys=no sort=fchela    

TKPROF: Release 10.2.0.5.0 - Production on Sun Aug 25 03:39:46 2013

Copyright (c) 1982, 2007, Oracle.  All rights reserved.

Sort options: fchela
********************************************************************************
count    = number of times OCI procedure was executed
cpu      = cpu time in seconds executing
elapsed  = elapsed time in seconds executing
disk     = number of physical reads of buffers from disk
query    = number of buffers gotten for consistent read
current  = number of buffers gotten in current mode (usually for update)
rows     = number of rows processed by the fetch or execute call
********************************************************************************

select count(*)
from
 fullscan

call     count       cpu    elapsed       disk      query    current        rows
------- ------  -------- ---------- ---------- ---------- ----------  ----------
Parse        1      0.00       0.00          0          0          0           0
Execute      1      0.00       0.00          0          0          0           0
Fetch        2      0.01       0.01       1140       1144          0           1
------- ------  -------- ---------- ---------- ---------- ----------  ----------
total        4      0.01       0.01       1140       1144          0           1

Misses in library cache during parse: 1
Optimizer mode: ALL_ROWS
Parsing user id: 64

Rows     Row Source Operation
-------  ---------------------------------------------------
      1  SORT AGGREGATE (cr=1144 pr=1140 pw=0 time=14476 us)
  77270   TABLE ACCESS FULL FULLSCAN (cr=1144 pr=1140 pw=0 time=386457 us)

 

 

 

如上Sort options: fchela 後,trace中資訊按照fetch elapsed time從長到短排列。

 

 

執行計劃

Rows     Row Source Operation
-------  ---------------------------------------------------
      1  SORT AGGREGATE (cr=1144 pr=1140 pw=0 time=14476 us)
  77270   TABLE ACCESS FULL FULLSCAN (cr=1144 pr=1140 pw=0 time=386457 us)

 

 

TKPROF中的執行計劃並不現實card、cost等CBO指標, 其所提供的每一個步驟的Rows 、CR、PR 資訊對於診斷執行計劃到底慢在哪一步有一定幫助, 但是其time耗時資訊並不準確。

 

 

等待事件

 

 

  Event waited on                             Times   Max. Wait  Total Waited
  ----------------------------------------   Waited  ----------  ------------
  SQL*Net message to client                       2        0.00          0.00
  db file sequential read                         1        0.00          0.00
  db file scattered read                         81        0.00          0.00
  SQL*Net message from client                     2        0.00          0.00

 

 

 

 

TKPROF中簡要描述了 語句相關的等待事件, 包括遇到了 多少次該等待事件(Times Waited)、 最長的等待是多久 Max.Wait, 總的等待時間Total Waited ,單位均為 S。

 

10046 中的等待時間描述過於簡單,僅為讓閱讀者簡要把握等待問題, 針對等待時間的調優 強烈建議 基於AWR中的wait histogram和ASH去分析, 與他們對比TKPROF顯然已經過時了。

 

 

示例解析

 

 

 

select count(1) from big1
where object_id between 10 and 100000
and data_object_id between 1 and 1000
and status like 'VALI%'
and object_type IN ('TABLE', 'INDEX')

call     count       cpu    elapsed       disk      query    current        rows
------- ------  -------- ---------- ---------- ---------- ----------  ----------
Parse        1     20.02 (c)  20.12 (b)      0          1          0           0
Execute      1      0.00       0.00          0          0          0           0
Fetch        2      1.13       1.33          0       9087          0           1
------- ------  -------- ---------- ---------- ---------- ----------  ----------
total        4     21.15      21.45 (a)      0       9088          0           1

Misses in library cache during parse: 1  <== 說明是硬解析
Optimizer mode: ALL_ROWS
Parsing user id: 54

 

 

 

  • (a)說明該語句總耗時 21.45s
  • (b) 說明該語句花在解析上的耗時20.12s
  • (c) 說明該語句花在解析上的CPU時間為20.02s
  • 語句解析等待時間= 語句解析耗時 – 語句解析CPU耗時 =  20.12 – 20.02 = 0.10 s

 

以上分析說明 該語句執行的絕大多數耗時花費在解析上, 而解析時 大多數時間是CPU運算, 一般有幾種可能導致這麼多的CPU運算:

  • 語句過於複雜,導致parse解析和optimize優化 消耗較多CPU
  • 主機CPU忙,程式分配不到足夠的CPU時間片
  • 可能遇到resource manager 限制實現CPU

 

視乎實際情況,需要具體分析。

 

【11g新特性】sec_max_failed_login_attempts

【11g新特性】sec_max_failed_login_attempts (預設為10,範圍為1到unlimited)這個引數以11g 新特性形式引入, 文件對它的描述是

SEC_MAX_FAILED_LOGIN_ATTEMPTS specifies the number of authentication attempts that can be made by a client on a connection to the server process. After the specified number of failure attempts, the connection will be automatically dropped by the server process.

 

但是有同學怎麼測試都無法生效, 實際該引數只對使用了OCI 的特定程式生效,而使用SQLPLUS是無法生效的, 坑爹的新特性:

 

SEC_MAX_FAILED_LOGIN_ATTEMPTS only works application uses OCI Program.SEC_MAX_FAILED_LOGIN_ATTEMPTS not work in sqlplus.
OCI Program have the following ,it wil work.
1.You need to use OCI_THREADED mode.
2.You need to set the attribute ofserver, username, password attributes in the appropriate handles:
3.You need to useOCISessionBegin to connect to the database

 

Maclean教你讀Oracle 10046 SQL TRACE

有同學一直向Maclean反應希望做一期10046 SQL trace的教程, 正好這幾天有空 我們就理一理。

 

為什麼我們要使用10046 trace?

 

10046 trace幫助我們解析 一條/多條SQL、PL/SQL語句的執行狀態 ,這些狀態包括 :Parse/Fetch/Execute三個階段中遇到的等待事件、消耗的物理和邏輯讀、CPU時間、執行計劃等等。

即10046 為我們揭示了 一條/多條SQL 的執行情況, 對於  以點入手的 SQL調優是很好的輔助工具,特別是在 10g之前沒有ASH的情況下。 但整體系統調優 不是10046 所擅長的,  10046 是 效能調優的起釘器 , AWR是效能調優 的錘子。

 

10046還能幫助我們分析 一些 DDL維護命令的內部工作原理, RMAN、Data Pump Expdp/Impdp等工具的緩慢問題等, 是研究 oracle 資料庫原理的 居家旅行必備良品。

 

10046 和SQL TRACE的區別?

 

10046 比 SQL_TRACE引數提供更多的控制選項, 更詳細的內容輸出, 一般Maclean只用10046 而不用sql_trace

 

10046 和10053 的區別?

 

10053 是最常用的Oracle 優化器optimizer 跟蹤trace, 10053 可以作為我們解析 優化器為什麼選擇某個執行計劃,其中的理由的輔助工具,但並不告訴我們這個執行計劃 到底執行地如何。

而10046 並不解釋 optimizer優化器的工作, 但它同樣說明了在SQL解析parse階段所遇到的等待事件和所消耗的CPU等資源,以及Execute執行和Fetch階段的各項指標。

 

簡而言之10046 告訴我們SQL(執行計劃)執行地如何, 10053告訴我們 優化器為什麼為這個SQL選擇某個執行計劃。

 

 10046 TRACE的LEVEL:

 

不同的Level 對應不同的跟蹤級別

  • 1  啟用標準的SQL_TRACE功能 ( 預設)  包含了 SQL語句、響應時間、服務時間、處理的行數,物理讀和寫的數目、執行計劃以及其他一些額外資訊。   到版本10.2中 執行計劃寫入到 trace 的條件是僅當相關遊標 已經關閉時, 且與之相關的執行統計資訊是所有執行次數的總和資料。  到版本11.1中僅在每次遊標的第一次執行後將執行計劃寫入到trace , 執行統計資訊僅僅和這第一次執行相關
  • 4 比level 1時多出 繫結變數的 trace
  • 8  比level 1多出等待事件,特別對於9i中指出 latch free等待事件很有用,對於分析全表掃描和索引掃描也很有用
  • 12  比level 1 多出 繫結變數和 等待事件
  • 16  在11g中為每一次執行生成STAT資訊,僅在11.1之後可用
  • 32  比level 1少執行計劃
  •  64  和level 1 相比 在第一次執行後還可能生成執行計劃資訊 ; 條件是某個遊標在前一次執行的前提下 執行耗時變長了一分鐘。僅在 11.2.0.2中可用
  • Level 28 (4 + 8 + 16) 代表 同時啟用 level 4 、level 8、level 16
  • level 68 ( 64 + 4 )  代表 同時啟用 level 64、level 4

 

 

 

 

設定的方法如下:

 

 

session 級別: alter session set events ‘10046  trace name context forever,level X’;

system 級別 :      alter system  set events ‘10046  trace name context forever,level X’;

 

針對非本會話的 某一個程式設定,如果你知道他的SPID 作業系統程式號

oradebug setospid SPID;

oradebug event 10046 trace name context forever, level X;

 

例如:

 

[oracle@vrh8 ~]$ ps -ef|grep LOCAL  
oracle   12421 12420  0 Aug21 ?        00:00:00 oracleG10R25 (DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq)))
oracle   12522 12521  0 Aug21 ?        00:00:00 oracleG10R25 (DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq)))
oracle   12533     1  0 Aug21 ?        00:00:00 oracleG10R25 (LOCAL=NO)
oracle   15354 15353  0 Aug21 ?        00:00:08 oracleG10R25 (DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq)))
oracle   15419 15418  0 Aug21 ?        00:00:11 oracleG10R25 (DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq)))
oracle   16219 16218  0 Aug21 ?        00:00:00 oracleG10R25 (DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq)))
oracle   17098 17097  0 03:12 ?        00:00:00 oracleG10R25 (DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq)))

要跟蹤 17098  這個程式

SQL> oradebug event 10046 trace name context forever, level 28;
Statement processed.

從 sid 定位到 SPID 或者 ORAPID 的 查詢如下:

SQL> select distinct sid from v$mystat;

       SID
----------
       141

SQL> select spid,pid from v$Process where addr=(select paddr from v$session where sid=141);

SPID                PID
------------ ----------
17196                24

select spid,pid from v$Process where addr=(select paddr from v$session where sid=&SID)

如果只知道 ORA的PID 那麼也可以

oradebug setorapid 24;
oradebug event 10046 trace name context forever, level 28;

 

 

 

10046 trace 示例解析

 

 

 

這裡我們引入一個全表掃描的10046例子 並解析該例子中的TRACE資訊:

 

 

 PARSING IN CURSOR #20 len=44 dep=0 uid=0 oct=3 lid=0 tim=1344883874047619 hv=2241892608 ad='a7902a08'
select count(*) from fullscan where owner=:v
END OF STMT
PARSE #20:c=2000,e=1087,p=0,cr=0,cu=0,mis=1,r=0,dep=0,og=1,tim=1344883874047610

PARSING IN CURSOR #26 len=198 dep=1 uid=0 oct=3 lid=0 tim=1344883874048534 hv=4125641360 ad='a7ab9fc0'
select obj#,type#,ctime,mtime,stime,status,dataobj#,flags,oid$, spare1, spare2 from obj$ where owner#=:1 and name=:2 and namespace=:3 and remoteowner is null and linkna
me is null and subname is null
END OF STMT
PARSE #26:c=0,e=531,p=0,cr=0,cu=0,mis=1,r=0,dep=1,og=4,tim=1344883874048501
BINDS #26:
kkscoacd
 Bind#0
  oacdty=02 mxl=22(22) mxlc=00 mal=00 scl=00 pre=00
  oacflg=08 fl2=0001 frm=00 csi=00 siz=24 off=0
  kxsbbbfp=7f9ccfec6bd8  bln=22  avl=01  flg=05
  value=0
 Bind#1  
  oacdty=01 mxl=32(08) mxlc=00 mal=00 scl=00 pre=00
  oacflg=18 fl2=0001 frm=01 csi=873 siz=32 off=0
  kxsbbbfp=7f9ccfec6ba0  bln=32  avl=08  flg=05
  value="FULLSCAN"  askmaclean.com
 Bind#2
   oacdty=02 mxl=22(22) mxlc=00 mal=00 scl=00 pre=00
  oacflg=08 fl2=0001 frm=00 csi=00 siz=24 off=0
  kxsbbbfp=7f9ccfec6b70  bln=24  avl=02  flg=05
  value=1
EXEC #26:c=1998,e=1506,p=0,cr=0,cu=0,mis=1,r=0,dep=1,og=4,tim=1344883874050177
WAIT #26: nam='db file sequential read' ela= 26 file#=1 block#=58007 blocks=1 obj#=37 tim=1344883874050345
WAIT #26: nam='db file sequential read' ela= 19 file#=1 block#=58966 blocks=1 obj#=18 tim=1344883874050452

PARSING IN CURSOR #25 len=493 dep=1 uid=0 oct=3 lid=0 tim=1344883874051980 hv=2584065658 ad='a7a9ef68'
select t.ts#,t.file#,t.block#,nvl(t.bobj#,0),nvl(t.tab#,0),t.intcols,nvl(t.clucols,0),t.audit$,t.flags,t.pctfree$,t.pctused$,t.initrans,t.maxtrans,t.rowcnt,t.blkcnt,t.e
mpcnt,t.avgspc,t.chncnt,t.avgrln,t.analyzetime,t.samplesize,t.cols,t.property,nvl(t.degree,1),nvl(t.instances,1),t.avgspc_flb,t.flbcnt,t.kernelcols,nvl(t.trigflag, 0),n
vl(t.spare1,0),nvl(t.spare2,0),t.spare4,t.spare6,ts.cachedblk,ts.cachehit,ts.logicalread from tab$ t, tab_stats$ ts where t.obj#= :1 and t.obj# = ts.obj# (+)
END OF STMT
PARSE #25:c=1000,e=585,p=0,cr=0,cu=0,mis=1,r=0,dep=1,og=4,tim=1344883874051971
BINDS #25:
kkscoacd
 Bind#0
  oacdty=02 mxl=22(22) mxlc=00 mal=00 scl=00 pre=00
  oacflg=08 fl2=0001 frm=00 csi=00 siz=24 off=0
  kxsbbbfp=7f9ccfec6bd8  bln=22  avl=04  flg=05
  value=96551
EXEC #25:c=3000,e=2757,p=0,cr=0,cu=0,mis=1,r=0,dep=1,og=4,tim=1344883874054930
WAIT #25: nam='db file sequential read' ela= 21 file#=1 block#=48756 blocks=1 obj#=3 tim=1344883874055059
WAIT #25: nam='db file sequential read' ela= 18 file#=1 block#=51327 blocks=1 obj#=4 tim=1344883874055149
FETCH #25:c=0,e=538,p=2,cr=5,cu=0,mis=0,r=1,dep=1,og=4,tim=1344883874055512
STAT #25 id=1 cnt=1 pid=0 pos=1 obj=0 op='MERGE JOIN OUTER (cr=5 pr=2 pw=0 time=565 us)'
STAT #25 id=2 cnt=1 pid=1 pos=1 obj=4 op='TABLE ACCESS CLUSTER TAB$ (cr=3 pr=2 pw=0 time=228 us)'
STAT #25 id=3 cnt=1 pid=2 pos=1 obj=3 op='INDEX UNIQUE SCAN I_OBJ# (cr=2 pr=1 pw=0 time=115 us)'
STAT #25 id=4 cnt=0 pid=1 pos=2 obj=0 op='BUFFER SORT (cr=2 pr=0 pw=0 time=251 us)'
STAT #25 id=5 cnt=0 pid=4 pos=1 obj=709 op='TABLE ACCESS BY INDEX ROWID TAB_STATS$ (cr=2 pr=0 pw=0 time=207 us)'
STAT #25 id=6 cnt=0 pid=5 pos=1 obj=710 op='INDEX UNIQUE SCAN I_TAB_STATS$_OBJ# (cr=2 pr=0 pw=0 time=33 us)'

................

BINDS #20:
kkscoacd
 Bind#0
  oacdty=96 mxl=2000(150) mxlc=00 mal=00 scl=00 pre=00
  oacflg=03 fl2=1000000 frm=01 csi=873 siz=2000 off=0
  kxsbbbfp=7f9ccfec6420  bln=2000  avl=50  flg=05
  value="MACLEAN                                           "
EXEC #20:c=20996,e=21249,p=7,cr=19,cu=0,mis=1,r=0,dep=0,og=1,tim=1344883874068951
WAIT #20: nam='SQL*Net message to client' ela= 6 driver id=1650815232 #bytes=1 p3=0 obj#=36 tim=1344883874069011
WAIT #20: nam='db file sequential read' ela= 23 file#=1 block#=80385 blocks=1 obj#=96551 tim=1344883874069159
WAIT #20: nam='db file scattered read' ela= 42 file#=1 block#=80386 blocks=7 obj#=96551 tim=1344883874069383
WAIT #20: nam='db file scattered read' ela= 41 file#=1 block#=82313 blocks=8 obj#=96551 tim=1344883874069543
WAIT #20: nam='db file scattered read' ela= 30 file#=1 block#=82321 blocks=8 obj#=96551 tim=1344883874069678
WAIT #20: nam='db file scattered read' ela= 38 file#=1 block#=82329 blocks=8 obj#=96551 tim=1344883874069949
WAIT #20: nam='db file scattered read' ela= 848 file#=1 block#=82337 blocks=8 obj#=96551 tim=1344883874070846
WAIT #20: nam='db file scattered read' ela= 63 file#=1 block#=82345 blocks=8 obj#=96551 tim=1344883874071042
WAIT #20: nam='db file scattered read' ela= 37 file#=1 block#=92593 blocks=8 obj#=96551 tim=1344883874071190
WAIT #20: nam='db file scattered read' ela= 73 file#=1 block#=92601 blocks=8 obj#=96551 tim=1344883874071393
FETCH #20:c=18997,e=18234,p=1139,cr=1143,cu=0,mis=0,r=1,dep=0,og=1,tim=1344883874087322
WAIT #20: nam='SQL*Net message from client' ela= 285 driver id=1650815232 #bytes=1 p3=0 obj#=96551 tim=1344883874087675
FETCH #20:c=0,e=3,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=0,tim=1344883874087715
WAIT #20: nam='SQL*Net message to client' ela= 3 driver id=1650815232 #bytes=1 p3=0 obj#=96551 tim=1344883874087744
*** 2013-08-22 04:44:59.527
WAIT #20: nam='SQL*Net message from client' ela= 12169104 driver id=1650815232 #bytes=1 p3=0 obj#=96551 tim=1344883886256887
STAT #20 id=1 cnt=1 pid=0 pos=1 obj=0 op='SORT AGGREGATE (cr=1143 pr=1139 pw=0 time=18243 us)'
STAT #20 id=2 cnt=0 pid=1 pos=1 obj=96551 op='TABLE ACCESS FULL FULLSCAN (cr=1143 pr=1139 pw=0 time=18200 us)'
WAIT #0: nam='SQL*Net message to client' ela= 8 driver id=1650815232 #bytes=1 p3=0 obj#=96551 tim=1344883886257193
WAIT #0: nam='SQL*Net message from client' ela= 455225 driver id=1650815232 #bytes=1 p3=0 obj#=96551 tim=1344883886712468
WAIT #0: nam='SQL*Net message to client' ela= 0 driver id=1650815232 #bytes=1 p3=0 obj#=96551 tim=1344883886712594

 

 

PARSING IN CURSOR #20 len=44 dep=0 uid=0 oct=3 lid=0 tim=1344883874047619 hv=2241892608 ad=’a7902a08′
select count(*) from fullscan where owner=:v
END OF STMT
PARSE #20:c=2000,e=1087,p=0,cr=0,cu=0,mis=1,r=0,dep=0,og=1,tim=1344883874047610

 

PARSING IN CURSOR #20 ,這裡的#20是遊標號, 這個遊標號非常重要, 後面的 FETCH 、WAIT、EXECUTE、PARSE 都通過這個遊標號和前面的SQL聯絡起來。  

 

注意可以看到 在執行PARSING IN CURSOR #20 後 ,PARSE #20之後沒有緊跟著 #20遊標的執行 ,而是跟了 #25、#26遊標的執行情況, 仔細看一下 #25和#26他們是 系統遞迴的recursive SQL  ,這些遞迴SQL由 使用者的SQL觸發,一般來說是查一些資料字典基表例如 obj$、tab$等,常規情況下 遞迴SQL執行消耗的資源和時間都非常少。

LEN=44  指SQL的長度

OCT=3    Oracle command type 指Oracle中命令分類的型別  可以通過 V$SQL.COMMAND_TYPE獲得對應關係

11g中提供了 V$SQLCOMMAND 檢視可以看到完整的對照列表, http://www.askmaclean.com/archives/vsqlcommand-sql-opcodes-and-names.html

 

LID=0 許可權使用者ID  Privilege user id.

 

TIM   timestamp 一個時間戳, 在9i之前 這個指標的單位是 1/100 s 即 10ms 。 到9i以後單位為 1/1000000  的microsecond 。 這個時間戳可以用來判斷 trace中2個點的時間差。  這個 TIm的值來自於V$TIMER檢視,這個檢視是Oracle內部計時用的。

 

DEP=0  代表該SQL的遞迴深入(recursive depth),因為遞迴SQL可能再引發下一層的遞迴SQL, 如果DEP=0則說明不是遞迴SQL,如果DEP>0則說明是遞迴SQL。

 

 UID=0  UID即USERID 用以標明是誰在解析這個遊標, 如果是0則說明是SYS 使用者, 具體 使用者名稱和UID對應可以通過如下查詢獲得:

select user#,name from user$;

 

OG=1  OG 代表optimizer_mode ,具體對應關係見下表

  • 0  遊標不可見 或 優化器環境未合理建立
  • 1 –  ALL_ROWS
  • 2  – FIRST_ROWS
  • 3   – RULE
  • 4   – CHOOSE

 

 

mis=0   該指標說明library cache未發生miss,則本次解析 我們沒有需要硬解析 而是採用軟解析或者更好的方式。 硬解析在Oracle中成本是很高的。 注意由於在任何階段包括PARSE/EXECUTE/FETCH階段都可能發生遊標被age out的現象,所以在這些階段都會列印mis指標。如果mis>0則說明可能發生了硬解析。

 

HV     代表這個SQL 的hash value , 10g之前沒有SQL_ID 時 主要靠HASH VALUE 來定位一個SQL

AD      代表SQLTEXT 的地址 來源於 V$SQLAREA.ADDRESS

err     代表 Oracle錯誤程式碼 例如ORA-1555

 

PARSE    是SQL執行的第一個階段,解析SQL

EXEC       是SQL執行的第二個階段,執行已經解析過的語句

FETCH   從遊標中  fetch資料行

UNMAP   是當遊標使用臨時表時,若遊標關閉則使用UNMAP釋放臨時表相關的資源,包括釋放鎖和釋放臨時段

 

C     比較重要的指標,代表本步操作消耗的CPU 時間片; 9i以後單位為microsecond

     Elapsed Time ,代表本步操作消耗的自然時間,  9i以後單位為microsecond

 

 

這裡存在一個問題例如 在我們的例子中PARSE #20:c=2000,e=1087   CPU_TIME> Elapsed time  ;

理論上 應當是  Elapsed Time = CPU TIME + WAIT TIME (等待事件的時間), 但是由於CPU TIME 和Elapsed time使用了不同 的clock時鐘計時,所以在 2者都很短,或者 是CPU敏感的操作時 有可能 CPU TIME> Elapsed time。

相關的BUG 有:

  • Bug 4161114 : IN V$SQL, CPU_TIME > ELAPSED_TIME
  • Bug 7603849 : CPU_TIME > ELAPSED_TIME FOR CERTAIN SQL’S IN V$SQL
  • Bug 7580277 : ELAPSED_TIME SHOWING 0 FOR CERTAIN SQL’S IN V$SQL
  • Bug 8243074 : INCORRECT ELAPSED_TIME IN V$SQL

該問題可能 在12c中得到修復

 

 p   物理讀的數目

CR  CR一致性讀引起的buffer get  數目

CU  當前讀current read 引起的buffer get 數目

    處理的行數

 

CLOSE #[CURSOR]:c=%u e=%u dep=%d type=%u tim=%u   ==》一個遊標關閉的例子

 CLOSE   遊標關閉

type    關閉遊標的操作型別

  • 0    該遊標從未被快取且執行次數小於3次,也叫hard close
  • 1      該遊標從未被快取但執行次數至少3次,若在session cached cursor中有free slot 則將該遊標放入session cached cursor
  • 2     該遊標從未被快取但執行次數至少3次,該遊標置入session cached cursor的條件是講老的快取age out掉
  • 3      該遊標已經在快取裡,則還會去

 

 

STAT #[CURSOR] id=N cnt=0 [pid=0 pos=0 obj=0 op=’SORT AGGREGATE ‘]  

 

  • STAT   相關行反應解釋執行計劃的統計資訊
  • [CURSOR]     遊標號
  • id    執行計劃的行數 從1開始
  • cnt    該資料來源的行數
  • pid    該資料來源的 父ID
  • pos    在執行計劃中的位置
  • obj     對應資料來源的  object id
  • op=    資料來源的訪問操作,例如 FULL SCAN

11g 以上還提供如下資訊:

 

STAT #2 id=1 cnt=26 pid=0 pos=1 obj=0 op=’HASH GROUP BY (cr=1143 pr=1139 pw=0 time=61372 us)’
STAT #2 id=2 cnt=77276 pid=1 pos=1 obj=96551 op=’TABLE ACCESS FULL FULLSCAN (cr=1143 pr=1139 pw=0 time=927821 us)’

 

  • CR 代表一致性讀的數量
  • PR  代表物理讀的數量
  • pw  代表物理寫的數量
  • time   單位為microsecond,本步驟的耗時
  • cost    本操作的優化器成本
  • size    評估的資料來源大小,單位為位元組
  • card       評估的優化器基數Cardinality.

 

 XCTEND rlbk=0, rd_only=1

  •  XCTEND  一個事務結束的標誌
  • rlbk           如果是1代表 有回滾操作, 如果是0 代表不會滾 即 commit提交了
  • rd_only     如果是1代表 事務只讀 , 如果是0 說明資料改變發生過

 

 

繫結變數  

BINDS #20:
kkscoacd
Bind#0
oacdty=96 mxl=2000(150) mxlc=00 mal=00 scl=00 pre=00
oacflg=03 fl2=1000000 frm=01 csi=873 siz=2000 off=0
kxsbbbfp=7f9ccfec6420 bln=2000 avl=50 flg=05
value=”MACLEAN

  • BINDS #20:  說明 繫結變數 是針對 20號遊標的
  • kkscoacd  是繫結變數相關的描述符
  • Bind#0   說明是第0個變數
  • oacdty      data type   96 是 ANSI fixed char
  • oacflg      代表繫結選項的特殊標誌位
  • size           為該記憶體chunk分配的記憶體大小
  • mxl       繫結變數的最大長度
  • pre      precision
  • scl      Scale
  • kxsbbbfp         buffer point
  • bln               bind buffer length
  • avl     實際的值的長度
  • flg          代表繫結狀態
  • value=”MACLEAN    實際的繫結值

 

如果看到 “bind 6: (No oacdef for this bind)”類似的資訊則說明在trace時 還沒有定義繫結資料。 這可能是在trace時遊標還沒繫結變數。

 

WAIT #20: nam=’db file scattered read’ ela= 42 file#=1 block#=80386 blocks=7 obj#=96551 tim=1344883874069383

 

  • WAIT #20 等待 20號遊標的相關等待事件
  • Nam      等待針對的事件名字,它的P1、P2、P3可以參考檢視V$EVENT_NAME,也可以從V$SESSION、ASH中觀察到等待事件
  • ela           本操作的耗時,單位為microsecond
  • p1,p2,p3       針對該事件的三個描述引數,見V$EVENT_NAME

 

在上例中針對 db file scattered read , P1為檔案號, P2為 起始塊號, p3為 讀的塊數,  即db file scattered read 是從 1號檔案的第80386 個塊開始一次讀取了7個塊。

注意在10046中 出現的WAIT 行資訊 都是 已經結束的等待事件, 而當前等待則不會在trace中出現,直到這個當前等待結束。 你可以通過systemstate dump/errorstack等trace來獲得當前等待資訊。

來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/12272958/viewspace-2150262/,如需轉載,請註明出處,否則將追究法律責任。

相關文章