資料倉儲專題(23):匯流排矩陣的另類應用-Drill Down into a More Detailed Bus Matrix
一、前言
Many of you are already familiar with the data warehouse bus architecture and matrix given their central role in building architected data marts. The corresponding bus matrix identifies the key business processes of an organization, along with their associated dimensions. Business processes (typically corresponding to major source systems) are listed as matrix rows, while dimensions appear as matrix columns. The cells of the matrix are then marked to indicate which dimensions apply to which processes.
In a single document, the data warehouse team has a tool for planning the overall data warehouse, identifying the shared dimensions across the enterprise, coordinating the efforts of separate implementation teams, and communicating the importance of shared dimensions throughout the organization. We firmly believe drafting a bus matrix is one of the key initial tasks to be completed by every data warehouse team after soliciting the business’ requirements.
二、面臨問題
While the matrix provides a high-level overview of the data warehouse presentation layer “puzzle pieces” and their ultimate linkages, it is often helpful to provide more detail as each matrix row is implemented. Multiple fact tables often result from a single business process. Perhaps there’s a need to view business results in a combination of transaction, periodic snapshot or accumulating snapshot perspectives. Alternatively, multiple fact tables are often required to represent atomic versus more summarized information or to support richer analysis in a heterogeneous product environment.
三、解決方案
We can alter the matrix’s “grain” or level of detail so that each row represents a single fact table (or cube) related to a business process. Once we’ve specified the individual fact table, we can supplement the matrix with columns to indicate the fact table’s granularity and corresponding facts (actual, calculated or implied). Rather than merely marking the dimensions that apply to each fact table, we can indicate the dimensions’ level of detail (such as brand or category, as appropriate, within the product dimension column).
四、總結
The resulting embellished matrix provides a roadmap to the families of fact tables in your data warehouse. While many of us are naturally predisposed to dense details, we suggest you begin with the more simplistic, high-level matrix and then drill-down into the details as each business process is implemented. Finally, for those of you with an existing data warehouse, the detailed matrix is often a useful tool to document the “as is” status of a more mature warehouse environment.
作者:張子良
出處:http://www.cnblogs.com/hadoopdev
本文版權歸作者所有,歡迎轉載,但未經作者同意必須保留此段宣告,且在文章頁面明顯位置給出原文連線,否則保留追究法律責任的權利。
相關文章
- 數倉實踐:匯流排矩陣架構設計矩陣架構
- SpringCloud(六)Bus訊息匯流排SpringGCCloud
- (原創)一般矩陣 Matrix類矩陣
- 資料匯流排模式模式
- Spring Cloud Bus 訊息匯流排介紹SpringCloud
- 資料結構:陣列,稀疏矩陣,矩陣的壓縮。應用:矩陣的轉置,矩陣相乘資料結構陣列矩陣
- 如何在 JavaScript 中實現 Event Bus(事件匯流排)JavaScript事件
- 實現一個事件匯流排(vue.prototype.$bus)?事件Vue
- 大資料匯流排(DataHub)大資料
- 乾貨|Spring Cloud Bus 訊息匯流排介紹SpringCloud
- 【矩陣乘法】Matrix Power Series矩陣
- POJ 3233 Matrix Power Series(矩陣+二分)矩陣
- hive資料倉儲匯入資料的方法Hive
- 資料倉儲應該用什麼方案——資料倉儲實施方案概述
- 解讀Nucleus Research 2022資料倉儲價值矩陣矩陣
- Cellular Matrix 蜂窩矩陣(一)矩陣
- goldengate 認證矩陣matrixGo矩陣
- Python Numpy的陣列array和矩陣matrixPython陣列矩陣
- 匯流排
- ORACLE FLASHBACK的另類應用薦Oracle
- 分層架構在資料倉儲的應用架構
- Spark Distributed matrix 分散式矩陣Spark分散式矩陣
- HDU 4920 Matrix multiplication(矩陣相乘)矩陣
- 旋轉矩陣(Rotate Matrix)的性質分析矩陣
- TRIZ矛盾矩陣在專利分析中的應用矩陣
- 資料倉儲專題(4)-分散式資料倉儲事實表設計思考---討論精華分散式
- 事件匯流排事件
- 前端匯流排前端
- 如何通過波形解析can匯流排資料
- 跟我學SpringCloud | 第八篇:Spring Cloud Bus 訊息匯流排SpringGCCloud
- [CareerCup] 1.7 Set Matrix Zeroes 矩陣賦零矩陣
- HDU 4965 Fast Matrix Calculation(矩陣快速冪)AST矩陣
- 設計資料倉儲和資料倉儲的粒度
- 演算法資料結構面試題——標記陣列在矩陣特徵識別中的應用演算法資料結構面試題陣列矩陣特徵
- 第八週 專案3-對稱矩陣壓儲存的實現與應用矩陣
- 你玩過輕量系統軟匯流排應用嗎?
- 【服務匯流排 Azure Service Bus】Service Bus在使用預提取(prefetching)後出現Microsoft.Azure.ServiceBus.MessageLockLostException異常問題ROSException
- 資料倉儲題庫(附答案)