PostgreSQL業務資料質量實時監控實踐

德哥發表於2017-12-09

標籤

PostgreSQL , pg_stat , 實時質量監控


背景

當業務系統越來越龐大後,各個業務線的資料對接會越來越頻繁,但是也會引入一個問題。

資料質量。

例如上游是否去掉了一些欄位,或者上游資料是否及時觸達,又或者上游資料本身是否出現了問題。

通過業務資料質量監控,可以發現這些問題。

而PostgreSQL內建的統計資訊能力,已經滿足了大部分業務資料質量實時監控場景的需求。

如果需要更加業務話、定製的資料質量監控。PostgreSQL還能支援閱後即焚,流式計算、非同步訊息等特性,支援實時的資料質量監控。

內建功能,業務資料質量實時監控

PostgreSQL內建統計資訊如下:

1、準實時記錄數

postgres=# d pg_class      
                     Table "pg_catalog.pg_class"      
       Column        |     Type     | Collation | Nullable | Default       
---------------------+--------------+-----------+----------+---------      
 relname             | name         |           | not null |   -- 物件名    
 relnamespace        | oid          |           | not null |   -- 物件所屬的schema, 對應pg_namespace.oid    
 relpages            | integer      |           | not null |   -- 評估的頁數(單位為block_size)    
 reltuples           | real         |           | not null |   -- 評估的記錄數   

2、準實時的每列的統計資訊(空值佔比、平均長度、有多少唯一值、高頻詞、高頻詞的佔比、均勻分佈柱狀圖、線性相關性、高頻元素、高頻元素佔比、高頻元素柱狀圖)

詳細的解釋如下:

postgres=# d pg_stats       
                     View "pg_catalog.pg_stats"      
         Column         |   Type   | Default       
------------------------+----------+---------      
 schemaname             | name     |   -- 物件所屬的schema    
 tablename              | name     |   -- 物件名    
 attname                | name     |   -- 列名    
 inherited              | boolean  |   -- 是否為繼承表的統計資訊(false時表示當前表的統計資訊,true時表示包含所有繼承表的統計資訊)    
 null_frac              | real     |   -- 該列空值比例    
 avg_width              | integer  |   -- 該列平均長度    
 n_distinct             | real     |   -- 該列唯一值個數(-1表示唯一,小於1表示佔比,大於等於1表示實際的唯一值個數)    
 most_common_vals       | anyarray |   -- 該列高頻詞    
 most_common_freqs      | real[]   |   -- 該列高頻詞對應的出現頻率    
 histogram_bounds       | anyarray |   -- 該列柱狀圖(表示隔出的每個BUCKET的記錄數均等)    
 correlation            | real     |   -- 該列儲存相關性(-1到1的區間),絕對值越小,儲存越離散。小於0表示反向相關,大於0表示正向相關    
 most_common_elems      | anyarray |   -- 該列為多值型別(陣列)時,多值元素的高頻詞    
 most_common_elem_freqs | real[]   |   -- 多值元素高頻詞的出現頻率    
 elem_count_histogram   | real[]   |   -- 多值元素的柱狀圖中,每個區間的非空唯一元素個數    

3、準實時的每個表的統計資訊,(被全表掃多少次,使用全表掃的方法掃了多少條記錄,被索引掃多少次,使用索引掃掃了多少條記錄,寫入多少條記錄,更新多少條記錄,有多少DEAD TUPLE等)。

postgres=# d pg_stat_all_tables   
                      View "pg_catalog.pg_stat_all_tables"  
       Column        |           Type           | Default   
---------------------+--------------------------+---------  
 relid               | oid                      |   
 schemaname          | name                     |   
 relname             | name                     |   
 seq_scan            | bigint                   | -- 被全表掃多少次  
 seq_tup_read        | bigint                   | -- 使用全表掃的方法掃了多少條記錄  
 idx_scan            | bigint                   | -- 被索引掃多少次  
 idx_tup_fetch       | bigint                   | -- 使用索引掃的方法掃了多少條記錄  
 n_tup_ins           | bigint                   | -- 插入了多少記錄  
 n_tup_upd           | bigint                   | -- 更新了多少記錄  
 n_tup_del           | bigint                   | -- 刪除了多少記錄  
 n_tup_hot_upd       | bigint                   | -- HOT更新了多少記錄  
 n_live_tup          | bigint                   | -- 多少可見記錄  
 n_dead_tup          | bigint                   | -- 多少垃圾記錄  
 n_mod_since_analyze | bigint                   |   
 last_vacuum         | timestamp with time zone |   
 last_autovacuum     | timestamp with time zone |   
 last_analyze        | timestamp with time zone |   
 last_autoanalyze    | timestamp with time zone |   
 vacuum_count        | bigint                   |   
 autovacuum_count    | bigint                   |   
 analyze_count       | bigint                   |   
 autoanalyze_count   | bigint                   |   

4、統計資訊分析排程策略

PostgreSQL會根據表記錄的變化,自動收集統計資訊。排程的引數控制如下:

#track_counts = on  
#autovacuum = on                        # Enable autovacuum subprocess?  `on`  
autovacuum_naptime = 15s                # time between autovacuum runs  
#autovacuum_analyze_threshold = 50      # min number of row updates before  
                                        # analyze  
  
預設變更 0.1% 後就會自動收集統計資訊。  
  
#autovacuum_analyze_scale_factor = 0.1  # fraction of table size before analyze  

通過內建的統計資訊能得到這些資訊:

1、準實時記錄數

2、每列(空值佔比、平均長度、有多少唯一值、高頻詞、高頻詞的佔比、均勻分佈柱狀圖、線性相關性、高頻元素、高頻元素佔比、高頻元素柱狀圖)

業務資料質量可以根據以上反饋,實時被發現。

例子

1、建立測試表

create table test(id int primary key, c1 int, c2 int, info text, crt_time timestamp);  
create index idx_test_1 on test (crt_time);  

2、建立壓測指令碼

vi test.sql  
  
set id random(1,10000000)  
insert into test values (:id, random()*100, random()*10000, random()::text, now()) on conflict (id) do update set crt_time=now();  

3、壓測

pgbench -M prepared -n -r -P 1 -f ./test.sql -c 32 -j 32 -T 1200  

4、建立清除資料排程,保持30秒的資料。

delete from test where ctid = any (array(  
  select ctid from test where crt_time < now()-interval `30 second`  
));  

0.1秒排程一次

psql   
  
delete from test where ctid = any (array(  
  select ctid from test where crt_time < now()-interval `30 second`  
));  
  
watch 0.1  
日誌如下  
  
DELETE 18470  
  
Fri 08 Dec 2017 04:31:54 PM CST (every 0.1s)  
  
DELETE 19572  
  
Fri 08 Dec 2017 04:31:55 PM CST (every 0.1s)  
  
DELETE 20159  
  
Fri 08 Dec 2017 04:31:55 PM CST (every 0.1s)  
  
DELETE 20143  
  
Fri 08 Dec 2017 04:31:55 PM CST (every 0.1s)  
  
DELETE 21401  
  
Fri 08 Dec 2017 04:31:55 PM CST (every 0.1s)  
  
DELETE 21956  
  
Fri 08 Dec 2017 04:31:56 PM CST (every 0.1s)  
  
DELETE 19978  
  
Fri 08 Dec 2017 04:31:56 PM CST (every 0.1s)  
  
DELETE 21916  

5、實時監測統計資訊

每列統計資訊

postgres=# select attname,null_frac,avg_width,n_distinct,most_common_vals,most_common_freqs,histogram_bounds,correlation from pg_stats where tablename=`test`;  
  
attname           | id  
null_frac         | 0  
avg_width         | 4  
n_distinct        | -1  
most_common_vals  |   
most_common_freqs |   
histogram_bounds  | {25,99836,193910,289331,387900,492669,593584,695430,795413,890787,1001849,1100457,1203161,1301537,1400265,1497824,1595610,1702278,1809415,1912946,2006274,2108505,2213771,2314440,2409333,2513067,2616217,2709052,2813209,2916342,3016292,3110554,3210817,3305896,3406145,3512379,3616638,3705990,3804538,3902207,4007939,4119100,4214497,4314986,4405492,4513675,4613327,4704905,4806556,4914360,5020248,5105998,5194904,5292779,5394640,5497986,5600441,5705246,5806209,5905498,6006522,6115688,6212831,6308451,6408320,6516028,6622895,6720613,6817877,6921460,7021999,7118151,7220074,7315355,7413563,7499978,7603076,7695692,7805120,7906168,8000492,8099783,8200918,8292854,8389462,8491879,8589691,8696502,8798076,8892978,8992364,9089390,9192142,9294759,9399562,9497099,9601571,9696437,9800758,9905327,9999758}  
correlation       | -0.00220302  
.....  
  
  
attname           | c2  
null_frac         | 0  
avg_width         | 4  
n_distinct        | 9989  
most_common_vals  | {3056,6203,1352,1649,1777,3805,7029,420,430,705,1015,1143,2810,3036,3075,3431,3792,4459,4812,5013,5662,5725,5766,6445,6882,7034,7064,7185,7189,7347,8266,8686,8897,9042,9149,9326,9392,9648,9652,9802,63,164,235,453,595,626,672,813,847,1626,1636,1663,1749,1858,2026,2057,2080,2106,2283,2521,2596,2666,2797,2969,3131,3144,3416,3500,3870,3903,3956,3959,4252,4265,4505,4532,4912,5048,5363,5451,5644,5714,5734,5739,5928,5940,5987,6261,6352,6498,6646,6708,6886,6914,7144,7397,7589,7610,7640,7687}  
most_common_freqs | {0.000366667,0.000366667,0.000333333,0.000333333,0.000333333,0.000333333,0.000333333,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667}  
histogram_bounds  | {0,103,201,301,399,495,604,697,802,904,1009,1121,1224,1320,1419,1514,1623,1724,1820,1930,2045,2147,2240,2335,2433,2532,2638,2738,2846,2942,3038,3143,3246,3342,3443,3547,3644,3744,3852,3966,4064,4162,4262,4354,4460,4562,4655,4755,4851,4948,5046,5143,5237,5340,5428,5532,5625,5730,5830,5932,6048,6144,6248,6349,6456,6562,6657,6768,6859,6964,7060,7161,7264,7357,7454,7547,7638,7749,7852,7956,8046,8138,8240,8337,8445,8539,8626,8728,8825,8924,9016,9116,9214,9311,9420,9512,9603,9709,9811,9911,10000}  
correlation       | -0.00246515  
  
...  
  
attname           | crt_time  
null_frac         | 0  
avg_width         | 8  
n_distinct        | -0.931747  
most_common_vals  | {"2017-12-08 16:32:53.836223","2017-12-08 16:33:02.700473","2017-12-08 16:33:03.226319","2017-12-08 16:33:03.613826","2017-12-08 16:33:08.171908","2017-12-08 16:33:14.727654","2017-12-08 16:33:20.857187","2017-12-08 16:33:22.519299","2017-12-08 16:33:23.388035","2017-12-08 16:33:23.519205"}  
most_common_freqs | {6.66667e-05,6.66667e-05,6.66667e-05,6.66667e-05,6.66667e-05,6.66667e-05,6.66667e-05,6.66667e-05,6.66667e-05,6.66667e-05}  
histogram_bounds  | {"2017-12-08 16:32:50.397367","2017-12-08 16:32:50.987576","2017-12-08 16:32:51.628523","2017-12-08 16:32:52.117421","2017-12-08 16:32:52.610271","2017-12-08 16:32:53.152021","2017-12-08 16:32:53.712685","2017-12-08 16:32:54.3036","2017-12-08 16:32:54.735576","2017-12-08 16:32:55.269238","2017-12-08 16:32:55.691081","2017-12-08 16:32:56.066085","2017-12-08 16:32:56.541396","2017-12-08 16:32:56.865717","2017-12-08 16:32:57.350169","2017-12-08 16:32:57.698694","2017-12-08 16:32:58.062828","2017-12-08 16:32:58.464265","2017-12-08 16:32:58.92354","2017-12-08 16:32:59.27284","2017-12-08 16:32:59.667347","2017-12-08 16:32:59.984229","2017-12-08 16:33:00.310772","2017-12-08 16:33:00.644104","2017-12-08 16:33:00.976184","2017-12-08 16:33:01.366153","2017-12-08 16:33:01.691384","2017-12-08 16:33:02.021643","2017-12-08 16:33:02.382856","2017-12-08 16:33:02.729636","2017-12-08 16:33:03.035666","2017-12-08 16:33:03.508461","2017-12-08 16:33:03.829351","2017-12-08 16:33:04.151727","2017-12-08 16:33:04.4596","2017-12-08 16:33:04.76933","2017-12-08 16:33:05.125295","2017-12-08 16:33:05.537555","2017-12-08 16:33:05.83828","2017-12-08 16:33:06.15387","2017-12-08 16:33:06.545922","2017-12-08 16:33:06.843679","2017-12-08 16:33:07.111281","2017-12-08 16:33:07.414602","2017-12-08 16:33:07.707961","2017-12-08 16:33:08.119891","2017-12-08 16:33:08.388883","2017-12-08 16:33:08.674867","2017-12-08 16:33:08.979336","2017-12-08 16:33:09.339377","2017-12-08 16:33:09.647791","2017-12-08 16:33:09.94157","2017-12-08 16:33:10.232294","2017-12-08 16:33:10.652072","2017-12-08 16:33:10.921087","2017-12-08 16:33:11.17986","2017-12-08 16:33:11.477399","2017-12-08 16:33:11.776529","2017-12-08 16:33:12.110676","2017-12-08 16:33:12.382742","2017-12-08 16:33:12.70362","2017-12-08 16:33:13.020485","2017-12-08 16:33:13.477398","2017-12-08 16:33:13.788134","2017-12-08 16:33:14.072125","2017-12-08 16:33:14.346058","2017-12-08 16:33:14.625692","2017-12-08 16:33:14.889661","2017-12-08 16:33:15.139977","2017-12-08 16:33:15.390732","2017-12-08 16:33:15.697878","2017-12-08 16:33:16.127449","2017-12-08 16:33:16.438117","2017-12-08 16:33:16.725608","2017-12-08 16:33:17.01954","2017-12-08 16:33:17.344609","2017-12-08 16:33:17.602447","2017-12-08 16:33:17.919983","2017-12-08 16:33:18.201386","2017-12-08 16:33:18.444387","2017-12-08 16:33:18.714402","2017-12-08 16:33:19.099394","2017-12-08 16:33:19.402888","2017-12-08 16:33:19.673556","2017-12-08 16:33:19.991907","2017-12-08 16:33:20.23329","2017-12-08 16:33:20.517752","2017-12-08 16:33:20.783084","2017-12-08 16:33:21.032402","2017-12-08 16:33:21.304109","2017-12-08 16:33:21.725122","2017-12-08 16:33:21.998994","2017-12-08 16:33:22.232959","2017-12-08 16:33:22.462384","2017-12-08 16:33:22.729792","2017-12-08 16:33:23.001244","2017-12-08 16:33:23.251215","2017-12-08 16:33:23.534155","2017-12-08 16:33:23.772144","2017-12-08 16:33:24.076088","2017-12-08 16:33:24.471151"}  
correlation       | 0.760231  

記錄數

postgres=# select reltuples from pg_class where relname=`test`;  
-[ RECORD 1 ]----------  
reltuples | 3.74614e+06  

DML活躍度統計資訊

postgres=# select * from pg_stat_all_tables where relname =`test`;  
-[ RECORD 1 ]-------+------------------------------  
relid               | 591006  
schemaname          | public  
relname             | test  
seq_scan            | 2  
seq_tup_read        | 0  
idx_scan            | 28300980  
idx_tup_fetch       | 24713736  
n_tup_ins           | 19730476  
n_tup_upd           | 8567352  
n_tup_del           | 16143587  
n_tup_hot_upd       | 0  
n_live_tup          | 3444573  
n_dead_tup          | 24748887  
n_mod_since_analyze | 547474  
last_vacuum         |   
last_autovacuum     | 2017-12-08 16:31:10.820459+08  
last_analyze        |   
last_autoanalyze    | 2017-12-08 16:35:16.75293+08  
vacuum_count        | 0  
autovacuum_count    | 1  
analyze_count       | 0  
autoanalyze_count   | 124  

資料清理排程

由於是資料質量監控,所以並不需要保留所有資料,我們通過以下方法,可以高效的清除資料,不影響寫入和讀取。

《如何根據行號高效率的清除過期資料 – 非分割槽表,資料老化實踐》

單例項,每秒的清除速度約263萬行。

如何清除統計資訊

postgres=# select pg_stat_reset_single_table_counters(`test`::regclass);  

如何強制手工收集統計資訊

postgres=# analyze verbose test;  
INFO:  analyzing "public.test"  
INFO:  "test": scanned 30000 of 238163 pages, containing 560241 live rows and 4294214 dead rows; 30000 rows in sample, 4319958 estimated total rows  
ANALYZE  

定製化,業務資料質量實時監控

使用閱後即焚的方法,實時監測資料質量。

例子:

《HTAP資料庫 PostgreSQL 場景與效能測試之 32 – (OLTP) 高吞吐資料進出(堆存、行掃、無需索引) – 閱後即焚(JSON + 函式流式計算)》

《HTAP資料庫 PostgreSQL 場景與效能測試之 31 – (OLTP) 高吞吐資料進出(堆存、行掃、無需索引) – 閱後即焚(讀寫大吞吐並測)》

《HTAP資料庫 PostgreSQL 場景與效能測試之 27 – (OLTP) 物聯網 – FEED日誌, 流式處理 與 閱後即焚 (CTE)》

《PostgreSQL 非同步訊息實踐 – Feed系統實時監測與響應(如 電商主動服務) – 分鐘級到毫秒級的實現》

資料清理排程

由於是資料質量監控,所以並不需要保留所有資料,我們通過以下方法,可以高效的清除資料,不影響寫入和讀取。

《如何根據行號高效率的清除過期資料 – 非分割槽表,資料老化實踐》

單例項,每秒的清除速度約263萬行。

參考

《如何根據行號高效率的清除過期資料 – 非分割槽表,資料老化實踐》

《PostgreSQL 統計資訊pg_statistic格式及匯入匯出dump_stat – 相容Oracle》

《PostgreSQL pg_stat_ pg_statio_ 統計資訊(scan,read,fetch,hit)原始碼解讀》


相關文章