題目連線:
http://codeforces.com/problemset/problem/164/B
Descriptionww.co
One remarkable day company "X" received k machines. And they were not simple machines, they were mechanical programmers! This was the last unsuccessful step before switching to android programmers, but that's another story.
The company has now n tasks, for each of them we know the start time of its execution si, the duration of its execution ti, and the company profit from its completion ci. Any machine can perform any task, exactly one at a time. If a machine has started to perform the task, it is busy at all moments of time from si to si + ti - 1, inclusive, and it cannot switch to another task.
You are required to select a set of tasks which can be done with these k machines, and which will bring the maximum total profit.
Input
The first line contains two integer numbers n and k (1 ≤ n ≤ 1000, 1 ≤ k ≤ 50) — the numbers of tasks and machines, correspondingly.
The next n lines contain space-separated groups of three integers si, ti, ci (1 ≤ si, ti ≤ 109, 1 ≤ ci ≤ 106), si is the time where they start executing the i-th task, ti is the duration of the i-th task and ci is the profit of its execution.
Output
Print n integers x1, x2, ..., xn. Number xi should equal 1, if task i should be completed and otherwise it should equal 0.
If there are several optimal solutions, print any of them.
Sample Input
3 1
2 7 5
1 3 3
4 1 3
Sample Output
0 1 1
Hint
題意
有n個任務,m個機器,每個機器同一時間只能處理一個任務
每個任務開始時間為s,持續時間為t,做完可以賺c元
問你做哪幾個任務可以拿到最多的錢
輸出方案
題解:
費用流
離散化每個任務的開始時間和結束時間,然後建圖跑一遍就好了
把所有時間扔到一個佇列裡面排序
然後建立源點到最開始任務的起始時間-第二個時間-第三個時間-....-最後一個時間點-匯點,期間流量都是m,花費為0
然後對於每一個任務,連一條開始時間到結束時間+1的邊,花費為-c,流量為1的
然後這樣跑費用流一定就是答案了
程式碼
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 10000;
const int MAXM = 100000;
const int INF = 0x3f3f3f3f;
struct Edge
{
int to, next, cap, flow, cost;
int id;
int x, y;
} edge[MAXM],HH[MAXN],MM[MAXN];
int head[MAXN],tol;
int pre[MAXN],dis[MAXN];
bool vis[MAXN];
int N, M;
void init()
{
N = MAXN;
tol = 0;
memset(head, -1, sizeof(head));
}
int addedge(int u, int v, int cap, int cost, int id)//左端點,右端點,容量,花費
{
edge[tol]. to = v;
edge[tol]. cap = cap;
edge[tol]. cost = cost;
edge[tol]. flow = 0;
edge[tol]. next = head[u];
edge[tol]. id = id;
int t = tol;
head[u] = tol++;
edge[tol]. to = u;
edge[tol]. cap = 0;
edge[tol]. cost = -cost;
edge[tol]. flow = 0;
edge[tol]. next = head[v];
edge[tol]. id = id;
head[v] = tol++;
return tol;
}
bool spfa(int s, int t)
{
queue<int>q;
for(int i = 0; i < N; i++)
{
dis[i] = INF;
vis[i] = false;
pre[i] = -1;
}
dis[s] = 0;
vis[s] = true;
q.push(s);
while(!q.empty())
{
int u = q.front();
q.pop();
vis[u] = false;
for(int i = head[u]; i != -1; i = edge[i]. next)
{
int v = edge[i]. to;
if(edge[i]. cap > edge[i]. flow &&
dis[v] > dis[u] + edge[i]. cost )
{
dis[v] = dis[u] + edge[i]. cost;
pre[v] = i;
if(!vis[v])
{
vis[v] = true;
q.push(v);
}
}
}
}
if(pre[t] == -1) return false;
else return true;
}
//返回的是最大流, cost存的是最小費用
int minCostMaxflow(int s, int t, int &cost)
{
int flow = 0;
cost = 0;
while(spfa(s,t))
{
int Min = INF;
for(int i = pre[t]; i != -1; i = pre[edge[i^1]. to])
{
if(Min > edge[i]. cap - edge[i]. flow)
Min = edge[i]. cap - edge[i]. flow;
}
for(int i = pre[t]; i != -1; i = pre[edge[i^1]. to])
{
edge[i]. flow += Min;
edge[i^1]. flow -= Min;
cost += edge[i]. cost * Min;
}
flow += Min;
}
return flow;
}
struct node
{
int st,et,ct;
int id;
}task[MAXN];
bool cmp(node A,node B)
{
if(A.st==B.st)return A.et<B.et;
return A.st<B.st;
}
map<int,int> H;
vector<int> V;
int id[3000];
int main()
{
int n, m;
scanf("%d%d",&n,&m);
init();
for(int i=1;i<=n;i++)
{
scanf("%d%d%d",&task[i].st,&task[i].et,&task[i].ct);
task[i].et+=task[i].st-1;
task[i].id=i;
V.push_back(task[i].st);
V.push_back(task[i].et);
}
sort(V.begin(),V.end());
V.erase(unique(V.begin(),V.end()),V.end());
for(int i=0;i<V.size();i++)
H[V[i]]=i+1;
for(int i=1;i<=V.size();i++)
addedge(i-1,i,m,0,0);
addedge(V.size(),V.size()+1,m,0,0);
addedge(V.size()+1,V.size()+2,m,0,0);
for(int i=1;i<=n;i++)
id[i]=addedge(H[task[i].st],H[task[i].et]+1,1,-task[i].ct,i);
int ans1=0,ans2=0;
ans1=minCostMaxflow(0,V.size()+2,ans2);
//printf("%d\n",ans2);
for(int i=1;i<=n;i++)
printf("%d ",edge[id[i]-2].flow);
return 0;
}