【論文研讀】通過deep representation learning軌跡聚類

VV不想說話發表於2018-12-19

1.論文目的:
輸入軌跡序列,通過滑動串列埠演算法提取物體的運動行為特徵,捕捉軌跡的時空不變的特徵。
在特徵提取模組,每個軌跡都轉化成一個特徵序列描述物體運動,進一步利用序列對自動編碼器進行序列編碼學習固定長度的深度表示,學習到的表示方法對物體的運動特徵進行了robustly encode,從而得到時空不變的聚類。


2.經典聚類演算法

K-mean DBSCAN spectral clustering


  1. 軌跡相似性衡量及其對比

    DTW:dynamic time warping

    EDR:edit distance on real sequence

    LCSS:longest common subsequences

    幾種軌跡相似度量方法的對比

    【論文研讀】通過deep representation learning軌跡聚類

  1. 分割槽
【論文研讀】通過deep representation learning軌跡聚類

5.整體框架流程

GPS records—->(軌跡處理)trajectories——>(特徵提取)moving behavior sequence—–>(自動編碼)moving behavior vector—>聚類分析層

****

6.特徵提取流程

【論文研讀】通過deep representation learning軌跡聚類

7.論文實驗
此作者使用的是船軌跡進行一個分類,和本人工作有一部分相似,因暫未深讀,後面原始碼測試,能夠跑通,會進行更新。
8.PPT :

【論文研讀】通過deep representation learning軌跡聚類
【論文研讀】通過deep representation learning軌跡聚類
【論文研讀】通過deep representation learning軌跡聚類
【論文研讀】通過deep representation learning軌跡聚類
【論文研讀】通過deep representation learning軌跡聚類
【論文研讀】通過deep representation learning軌跡聚類
【論文研讀】通過deep representation learning軌跡聚類
【論文研讀】通過deep representation learning軌跡聚類
【論文研讀】通過deep representation learning軌跡聚類
【論文研讀】通過deep representation learning軌跡聚類
【論文研讀】通過deep representation learning軌跡聚類

相關文章